
Piscine C
Jour 05

Staff 42 piscine@42.fr

Résumé: Ce document est le sujet du jour 05 de la piscine C de 42.

piscine@42.fr

Table des matières
I Consignes 2

II Préambule 4

III Exercice 00 : ft_putstr 5

IV Exercice 01 : ft_putnbr 6

V Exercice 02 : ft_atoi 7

VI Exercice 03 : ft_strcpy 8

VII Exercice 04 : ft_strncpy 9

VIII Exercice 05 : ft_strstr 10

IX Exercice 06 : ft_strcmp 11

X Exercice 07 : ft_strncmp 12

XI Exercice 08 : ft_strupcase 13

XII Exercice 09 : ft_strlowcase 14

XIII Exercice 10 : ft_strcapitalize 15

XIV Exercice 11 : ft_str_is_alpha 16

XV Exercice 12 : ft_str_is_numeric 17

XVI Exercice 13 : ft_str_is_lowercase 18

XVII Exercice 14 : ft_str_is_uppercase 19

XVIII Exercice 15 : ft_str_is_printable 20

XIX Exercice 16 : ft_strcat 21

XX Exercice 17 : ft_strncat 22

XXI Exercice 18 : ft_strlcat 23

XXII Exercice 19 : ft_strlcpy 24

XXIII Exercice 20 : ft_putnbr_base 25

1

Piscine C Jour 05

XXIV Exercice 21 : ft_atoi_base 27

XXV Exercice 22 : ft_putstr_non_printable 28

XXVI Exercice 23 : ft_print_memory 29

2

Chapitre I

Consignes

• Seule cette page servira de référence : ne vous fiez pas aux bruits de couloir.

• Le sujet peut changer jusqu’à une heure avant le rendu.

• Attention aux droits de vos fichiers et de vos répertoires.

• Vous devez suivre la procédure de rendu pour tous vos exercices.

• Vos exercices seront corrigés par vos camarades de piscine.

• En plus de vos camarades, vous serez corrigés par un programme appelé la Mou-
linette.

• La Moulinette est très stricte dans sa notation. Elle est totalement automatisée. Il
est impossible de discuter de sa note avec elle. Soyez d’une rigueur irréprochable
pour éviter les surprises.

• La Moulinette n’est pas très ouverte d’esprit. Elle ne cherche pas à comprendre le
code qui ne respecte pas la Norme. La Moulinette utilise le programme norminette
pour vérifier la norme de vos fichiers. Comprendre par là qu’il est stupide de rendre
un code qui ne passe pas la norminette.

• L’utilisation d’une fonction interdite est un cas de triche. Toute triche est sanc-
tionnée par la note de -42.

• Si ft_putchar() est une fonction autorisée, nous compilerons avec notre ft_putchar.c.

• Vous ne devrez rendre une fonction main() que si nous vous demandons un programme.

• Les exercices sont très précisément ordonnés du plus simple au plus complexe.
En aucun cas nous ne porterons attention ni ne prendrons en compte un exercice
complexe si un exercice plus simple n’est pas parfaitement réussi.

• La Moulinette compile avec les flags -Wall -Wextra -Werror, et utilise gcc.

• Si votre programme ne compile pas, vous aurez 0.

• Vous ne devez laisser dans votre répertoire aucun autre fichier que ceux explicite-
ment specifiés par les énoncés des exercices.

3

Piscine C Jour 05

• Vous avez une question ? Demandez à votre voisin de droite. Sinon, essayez avec
votre voisin de gauche.

• Votre manuel de référence s’appelle Google / man / Internet /

• Pensez à discuter sur le forum Piscine de votre Intra !

• Lisez attentivement les exemples. Ils pourraient bien requérir des choses qui ne
sont pas autrement précisées dans le sujet...

• Réfléchissez. Par pitié, par Odin ! Nom d’une pipe.

Pour cette journée, la norminette doit être lancée avec le flag -R
CheckForbiddenSourceHeader. La moulinette l’utilisera aussi.

4

Chapitre II

Préambule

Utilisations possibles de la cocaïne, selon la Désencyclopédie :

Bien qu’étant conseillée pour les nourrissons, la cocaïne peut également
entrer dans la composition de divers plats variés et relativement
différents les uns des autres.

La cocaïne a également de puissantes vertus médicinales.
Son utilisation est recommandée par l’OMS pour guérir:

- Le rhume (consommer la cocaïne en infusion)

- Les rhumatismes

- Les ruminants (maladie de la vache folle et autres)

- Les coupures (mélanger la cocaïne avec du vinaigre et appliquer en
cataplasme)

- Le syndrôme de Vladimir-von-Umbolt. Cette maladie ne s’est d’ailleurs
jamais déclarée, sans doute grâce à la cocaïne

- Une mort lente (mélanger la cocaïne avec du cyanure et de l’antimoine,
ensuite avaler cul-sec).

Comme, dans la réalité, la cocaïne est en fait une substance très dangereuse, vous
allez devoir vous contenter de faire du C.

5

Chapitre III

Exercice 00 : ft_putstr

Exercice : 00

ft_putstr
Dossier de rendu : ex00/

Fichiers à rendre : ft_putstr.c
Fonctions Autorisées : ft_putchar
Remarques : n/a

42 - Classics : Ces exercices sont incontournables et ne rapportent aucun points, mais
il est imperatif de les valider pour accéder aux véritables exercices du jour.

• Écrire une fonction qui affiche un à un les caractères d’une chaîne à l’écran.

• L’adresse du premier caractère de la chaîne est contenue dans le pointeur passé en
paramètre à la fonction.

• Elle devra être prototypée de la façon suivante :

void ft_putstr(char *str);

6

Chapitre IV

Exercice 01 : ft_putnbr

Exercice : 01

ft_putnbr
Dossier de rendu : ex01/

Fichiers à rendre : ft_putnbr.c
Fonctions Autorisées : ft_putchar
Remarques : n/a

42 - Classics : Ces exercices sont incontournables et ne rapportent aucun points, mais
il est imperatif de les valider pour accéder aux véritables exercices du jour.

• Écrire une fonction qui affiche un nombre passé en paramètre. La fonction devra
être capable d’afficher la totalité des valeurs possibles dans une variable de type
int.

• Elle devra être prototypée de la façon suivante :

void ft_putnbr(int nb);

• Par exemple :
◦ ft_putnbr(42) affiche "42".

7

Chapitre V

Exercice 02 : ft_atoi

Exercice : 02

ft_atoi
Dossier de rendu : ex02/

Fichiers à rendre : ft_atoi.c
Fonctions Autorisées : Aucune
Remarques : n/a

42 - Classics : Ces exercices sont incontournables et ne rapportent aucun points, mais
il est imperatif de les valider pour accéder aux véritables exercices du jour.

• Reproduire à l’identique le fonctionnement de la fonction atoi (man atoi).

• Elle devra être prototypée de la façon suivante :

int ft_atoi(char *str);

8

Chapitre VI

Exercice 03 : ft_strcpy

Exercice : 03

ft_strcpy
Dossier de rendu : ex03/

Fichiers à rendre : ft_strcpy.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strcpy (man strcpy).

• Elle devra être prototypée de la façon suivante :

char *ft_strcpy(char *dest, char *src);

9

Chapitre VII

Exercice 04 : ft_strncpy

Exercice : 04

ft_strncpy
Dossier de rendu : ex04/

Fichiers à rendre : ft_strncpy.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strncpy (man strncpy).

• Elle devra être prototypée de la façon suivante :

char *ft_strncpy(char *dest, char *src, unsigned int n);

10

Chapitre VIII

Exercice 05 : ft_strstr

Exercice : 05

ft_strstr
Dossier de rendu : ex05/

Fichiers à rendre : ft_strstr.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strstr (man strstr).

• Elle devra être prototypée de la façon suivante :

char *ft_strstr(char *str, char *to_find);

11

Chapitre IX

Exercice 06 : ft_strcmp

Exercice : 06

ft_strcmp
Dossier de rendu : ex06/

Fichiers à rendre : ft_strcmp.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strcmp (man strcmp).

• Elle devra être prototypée de la façon suivante :

int ft_strcmp(char *s1, char *s2);

12

Chapitre X

Exercice 07 : ft_strncmp

Exercice : 07

ft_strncmp
Dossier de rendu : ex07/

Fichiers à rendre : ft_strncmp.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strncmp (man strncmp).

• Elle devra être prototypée de la façon suivante :

int ft_strncmp(char *s1, char *s2, unsigned int n);

13

Chapitre XI

Exercice 08 : ft_strupcase

Exercice : 08

ft_strupcase
Dossier de rendu : ex08/

Fichiers à rendre : ft_strupcase.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui met en majuscule chaque lettre de chaque mot.

• Elle devra être prototypée de la façon suivante :

char *ft_strupcase(char *str);

• Elle devra renvoyer str.

14

Chapitre XII

Exercice 09 : ft_strlowcase

Exercice : 09

ft_strlowcase
Dossier de rendu : ex09/

Fichiers à rendre : ft_strlowcase.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui met en minuscule chaque lettre de chaque mot.

• Elle devra être prototypée de la façon suivante :

char *ft_strlowcase(char *str);

• Elle devra renvoyer str.

15

Chapitre XIII

Exercice 10 : ft_strcapitalize

Exercice : 10

ft_strcapitalize
Dossier de rendu : ex10/

Fichiers à rendre : ft_strcapitalize.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui met en majuscule la première lettre de chaque mot et le
reste du mot en minuscule.

• Un mot est une suite de caractères alphanumériques.

• Elle devra être prototypée de la façon suivante :

char *ft_strcapitalize(char *str);

• Elle devra renvoyer str.

• Par exemple :

salut, comment tu vas ? 42mots quarante-deux; cinquante+et+un

• Doit donner :

Salut, Comment Tu Vas ? 42mots Quarante-Deux; Cinquante+Et+Un

16

Chapitre XIV

Exercice 11 : ft_str_is_alpha

Exercice : 11

ft_str_is_alpha
Dossier de rendu : ex11/

Fichiers à rendre : ft_str_is_alpha.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie 1 si la chaîne passée en paramètre ne contient que
des caractères alphabétiques et renvoie 0 si la fonction contient d’autres types de
caractères.

• Elle devra être prototypée de la façon suivante :

int ft_str_is_alpha(char *str);

• Elle devra renvoyer 1 si str est une chaîne vide.

17

Chapitre XV

Exercice 12 : ft_str_is_numeric

Exercice : 12

ft_str_is_numeric
Dossier de rendu : ex12/

Fichiers à rendre : ft_str_is_numeric.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie 1 si la chaîne passée en paramètre ne contient que
des chiffres et renvoie 0 si la fonction contient d’autres types de caractères.

• Elle devra être prototypée de la façon suivante :

int ft_str_is_numeric(char *str);

• Elle devra renvoyer 1 si str est une chaîne vide.

18

Chapitre XVI

Exercice 13 : ft_str_is_lowercase

Exercice : 13

ft_str_is_lowercase
Dossier de rendu : ex13/

Fichiers à rendre : ft_str_is_lowercase.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie 1 si la chaîne passée en paramètre ne contient que
des caractères alphabétiques minuscules et renvoie 0 si la fonction contient d’autres
types de caractères.

• Elle devra être prototypée de la façon suivante :

int ft_str_is_lowercase(char *str);

• Elle devra renvoyer 1 si str est une chaîne vide.

19

Chapitre XVII

Exercice 14 : ft_str_is_uppercase

Exercice : 14

ft_str_is_uppercase
Dossier de rendu : ex14/

Fichiers à rendre : ft_str_is_uppercase.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie 1 si la chaîne passée en paramètre ne contient
que des caractères alphabétiques majuscules et renvoie 0 si la fonction contient
d’autres types de caractères.

• Elle devra être prototypée de la façon suivante :

int ft_str_is_uppercase(char *str);

• Elle devra renvoyer 1 si str est une chaîne vide.

20

Chapitre XVIII

Exercice 15 : ft_str_is_printable

Exercice : 15

ft_str_is_printable
Dossier de rendu : ex15/

Fichiers à rendre : ft_str_is_printable.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie 1 si la chaîne passée en paramètre ne contient
que des caractères affichables et renvoie 0 si la fonction contient d’autres types de
caractères.

• Elle devra être prototypée de la façon suivante :

int ft_str_is_printable(char *str);

• Elle devra renvoyer 1 si str est une chaîne vide.

21

Chapitre XIX

Exercice 16 : ft_strcat

Exercice : 16

ft_strcat
Dossier de rendu : ex16/

Fichiers à rendre : ft_strcat.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strcat (man strcat).

• Elle devra être prototypée de la façon suivante :

char *ft_strcat(char *dest, char *src);

22

Chapitre XX

Exercice 17 : ft_strncat

Exercice : 17

ft_strncat
Dossier de rendu : ex17/

Fichiers à rendre : ft_strncat.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strncat (man strncat).

• Elle devra être prototypée de la façon suivante :

char *ft_strncat(char *dest, char *src, int nb);

23

Chapitre XXI

Exercice 18 : ft_strlcat

Exercice : 18

ft_strlcat
Dossier de rendu : ex18/

Fichiers à rendre : ft_strlcat.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strlcat (man strlcat).

• Elle devra être prototypée de la façon suivante :

unsigned int ft_strlcat(char *dest, char *src, unsigned int size);

24

Chapitre XXII

Exercice 19 : ft_strlcpy

Exercice : 19

ft_strlcpy
Dossier de rendu : ex19/

Fichiers à rendre : ft_strlcpy.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Reproduire à l’identique le fonctionnement de la fonction strlcpy (man strlcpy).

• Elle devra être prototypée de la façon suivante :

unsigned int ft_strlcpy(char *dest, char *src, unsigned int size);

25

Chapitre XXIII

Exercice 20 : ft_putnbr_base

Exercice : 20

ft_putnbr_base
Dossier de rendu : ex20/

Fichiers à rendre : ft_putnbr_base.c
Fonctions Autorisées : ft_putchar
Remarques : n/a

• Écrire une fonction qui affiche un nombre à l’écran dans une base donnée.

• Ce nombre est fourni sous la forme d’un int et la base sous la forme d’une chaîne
de caractères.

• La base contient tous les symboles utilisables pour afficher le nombre :
◦ 0123456789 est la base couramment utilisée pour représenter nos nombres

décimaux ;

◦ 01 est une base binaire ;

◦ 0123456789ABCDEF est une base hexadecimale ;

◦ poneyvif est une base octale.

• La fonction doit gérer les nombres négatifs.

• Si un paramètre contient une erreur la fonction n’affiche rien. Une erreur peut
être :
◦ base est vide ou est de taille 1 ;

◦ base contient deux fois le même caractère ;

◦ base contient les caractères + ou - ;

◦ etc.

• Elle devra être prototypée de la façon suivante :

26

Piscine C Jour 05

void ft_putnbr_base(int nbr, char *base);

27

Chapitre XXIV

Exercice 21 : ft_atoi_base

Exercice : 21

ft_atoi_base
Dossier de rendu : ex21/

Fichiers à rendre : ft_atoi_base.c
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire une fonction qui renvoie un nombre. Ce nombre est connu sous la forme
d’une chaîne de caractères.

• La chaîne de caractères exprime le nombre dans une base particulière passée en
second paramètre.

• La fonction doit gérer les nombres négatifs.

• La fonction doit gérer les signes comme man atoi.

• Si un paramètre contient une erreur la fonction renvoie 0. Une erreur peut être :
◦ str est une chaîne vide ;

◦ la base est vide ou est de taille 1 ;

◦ str contient des caractères qui ne sont pas dans la base et ne sont pas + ou - ;

◦ la base contient deux fois le même caractère ;

◦ la base contient les caractères + ou - ;

◦ etc.

• Elle devra être prototypée de la façon suivante :

int ft_atoi_base(char *str, char *base);

28

Chapitre XXV

Exercice 22 :
ft_putstr_non_printable

Exercice : 22

ft_putstr_with_non_printable
Dossier de rendu : ex22/

Fichiers à rendre : ft_putstr_non_printable.c
Fonctions Autorisées : ft_putchar
Remarques : n/a

• Écrire une fonction qui affiche une chaîne de caractères à l’écran. Si cette chaîne
contient des caractères non-imprimables, ils devront être affichés sous forme hexa-
décimale (en minuscules) en les précédant d’un "backslash".

• Par exemple, avec ce paramètre :

Coucou\ntu vas bien ?

• La fonction devra afficher :

Coucou\0atu vas bien ?

• Elle devra être prototypée de la façon suivante :

void ft_putstr_non_printable(char *str);

29

Chapitre XXVI

Exercice 23 : ft_print_memory

Exercice : 23

ft_print_memory
Dossier de rendu : ex23/

Fichiers à rendre : ft_print_memory.c
Fonctions Autorisées : ft_putchar
Remarques : n/a

• Écrire une fonction qui affiche une zone mémoire à l’écran.

• L’affichage de la zone mémoire est séparée en trois colonnes :
◦ L’adresse en hexadécimal du premier caractère de la ligne ;

◦ Le contenu en hexadécimal ;

◦ Le contenu en caractères imprimables.

• Si un caractère est non-imprimable il sera remplacé par un point.

• Chaque ligne doit gérer seize caractères.

• Si size est égale à 0, rien ne sera affiché.

30

Piscine C Jour 05

• Exemple :
guilla_i@seattle $> ./ft_print_memory
00000000: 5361 6c75 7420 6c65 7320 616d 696e 6368 Salut les aminch
00000010: 6573 2063 2765 7374 2063 6f6f 6c20 7368 es c'est cool sh
00000020: 6f77 206d 656d 206f 6e20 6661 6974 2064 ow mem on fait d
00000030: 6520 7472 7563 2074 6572 7269 626c 6500 e truc terrible.
00000040: 2e00 0102 0304 0506 0708 090e 0f1b 7f
guilla_i@seattle $> ./ft_print_memory | cat -te
00000000: 5361 6c75 7420 6c65 7320 616d 696e 6368 Salut les aminch$
00000010: 6573 2063 2765 7374 2063 6f6f 6c20 7368 es c'est cool sh$
00000020: 6f77 206d 656d 206f 6e20 6661 6974 2064 ow mem on fait d$
00000030: 6520 7472 7563 2074 6572 7269 626c 6500 e truc terrible.$
00000040: 2e00 0102 0304 0506 0708 090e 0f1b 7f$
guilla_i@seattle $>

• Elle devra être prototypée de la façon suivante :

void *ft_print_memory(void *addr, unsigned int size);

• Elle devra renvoyer addr.

31

	Consignes
	Préambule
	Exercice 00 : ft_putstr
	Exercice 01 : ft_putnbr
	Exercice 02 : ft_atoi
	Exercice 03 : ft_strcpy
	Exercice 04 : ft_strncpy
	Exercice 05 : ft_strstr
	Exercice 06 : ft_strcmp
	Exercice 07 : ft_strncmp
	Exercice 08 : ft_strupcase
	Exercice 09 : ft_strlowcase
	Exercice 10 : ft_strcapitalize
	Exercice 11 : ft_str_is_alpha
	Exercice 12 : ft_str_is_numeric
	Exercice 13 : ft_str_is_lowercase
	Exercice 14 : ft_str_is_uppercase
	Exercice 15 : ft_str_is_printable
	Exercice 16 : ft_strcat
	Exercice 17 : ft_strncat
	Exercice 18 : ft_strlcat
	Exercice 19 : ft_strlcpy
	Exercice 20 : ft_putnbr_base
	Exercice 21 : ft_atoi_base
	Exercice 22 : ft_putstr_non_printable
	Exercice 23 : ft_print_memory

