Piscine C

Jour 11

Staff 42 piscine@42.fr

Résumé: Ce document est le sujet du jour 11 de la piscine C de 42.

piscine@42.fr

Table des matiéres

II

I11

IV

VI

VII

VIII

IX

XI

XII

XIII

X1V

XV

XVI

XVII

XVIII

XIX

XX

Consignes

Préambule

Exercice 00 :

Exercice 01

Exercice 02

Exercice 03

Exercice 04

Exercice 05

Exercice 06

Exercice 07 :

Exercice 08

Exercice 09

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

Exercice

10

11 :

12 :

13 :

14 :

15 :

16 :

17 :

ft create elem

: ft_ list_ push__back

: ft_ list_ push_ front

: ft_ list_ size

: ft_ list last

: ft_ list_ push_ params

: ft_ list_ clear

ft list at

: ft_ list reverse
: ft_ list foreach

: ft_list_ foreach if

ft list find

ft_list remove if

ft_ list__merge

ft_ list sort

ft list reverse fun
ft _sorted_ list insert

ft_ sorted_ list__merge

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Chapitre 1

Consignes

e Secule cette page servira de référence : ne vous fiez pas aux bruits de couloir.
e Le sujet peut changer jusqu’a une heure avant le rendu.
e Attention aux droits de vos fichiers et de vos répertoires.

e Vous devez suivre la procédure de rendu pour tous vos exercices.

e Vos exercices seront corrigés par vos camarades de piscine.

e En plus de vos camarades, vous serez corrigés par un programme appelé la Mouli-
nette.

e La Moulinette est tres stricte dans sa notation. Elle est totalement automatisée. Il
est impossible de discuter de sa note avec elle. Soyez d’une rigueur irréprochable
pour éviter les surprises.

e La Moulinette n’est pas tres ouverte d’esprit. Elle ne cherche pas a comprendre le
code qui ne respecte pas la Norme.

e [’utilisation d’une fonction interdite est un cas de triche. Toute triche est sanction-
née par la note de -42.

e Sift_ putchar() est une fonction autorisée, nous compilerons avec notre ft_putchar. c.
e Vous ne devrez rendre une fonction main() que si nous vous demandons un programme.

e Les exercices sont tres précisément ordonnés du plus simple au plus complexe.
En aucun cas nous ne porterons attention ni ne prendrons en compte un exercice
complexe si un exercice plus simple n’est pas parfaitement réussi.

e La Moulinette compile avec les flags -Wall -Wextra -Werror.
e Si votre programme ne compile pas, vous aurez 0.

e Vous ne devez laisser dans votre répertoire aucun autre fichier que ceux explicite-
ment specifiés par les énoncés des exercices.

e Vous avez une question? Demandez a votre voisin de droite. Sinon, essayez avec
votre voisin de gauche.

Piscine C Jour 11

Votre manuel de référence s’appelle Google / man / Internet /

Pensez & discuter sur le forum Piscine de votre Intra!

Lisez attentivement les exemples. Ils pourraient bien requérir des choses qui ne sont
pas autrement précisées dans le sujet...

Réfléchissez. Par pitié, par Odin! Nom d’une pipe.

Pour les exos sur les listes, on utilisera la structure suivante :

typedef struct
{

struct s_list

void

}

e Vous devez mettre cette structure dans un fichier ft_list.h et le rendre a chaque
exercice.

e A partir de 'exercice 01 nous utiliserons notre ft_ create elem, prenez les disposi-
tions nécessaires (il pourrait étre intéressant d’avoir son prototype dans ft_ list.h...).

Chapitre 11

Préambule

SPOILER ALERT
NE LISEZ PAS LA PAGE SUIVANTE

Piscine C Jour 11

Vous 'aurez voulu.

e Dans Star Wars, Dark Vador est le pere de Luke Skywalker.

e Dans The Usual Suspects, Verbal est Keyser Soze.

e Dans Fight Club, Tyler Durden et le narrateur sont la méme personne.

e Dans Sixiéme Sens, Bruce Willis est mort depuis le début.

e Dans Les Autres, les habitants de la maison sont les fantomes et vice-versa.
e Dans Bambi, la mere de Bambi meurt.

e Dans Le Village, les monstres sont les villageois et 'action se situe, en réalité,
dans notre époque.

e Dans Harry Potter, Dumbledore meurt.
e Dans La Planéte des Singes, l'action se situe sur Terre.

e Dans Le Trdone de Fer, Robb Stark et Joffrey Baratheon meurent le soir de leurs
noces.

e Dans Twilight, les vampires brillent au soleil.

e Dans Stargate SG-1, Saison 1, Episode 18, O'Neill et Carter sont en Antarc-
tique.

e Dans The Dark Knight Rises, Miranda Tate est Talia Al'Gul.

e Dans Super Mario Bros, la princesse est dans un autre chateau.

Chapitre 111

Exercice 00 : ft create elem

l Exercice : 00
14
'4

ft_create elem

Dossier de rendu : ex00/

Fichiers a rendre : ft_create_elem.c, ft_list.h

Fonctions Autorisées : malloc

Remarques : n/a

e Ecrire la fonction ft_create_elem qui crée un nouvel élément de type t_list.
e Elle devra assigner data au parametre fournis et next a NULL.
e Elle devra étre prototypée de la fagon suivante :

t_list * (void *data);

Chapitre IV

Exercice 01 : ft_list push back

l Exercice : 01
14
'4

ft_ list_ push_ back

Dossier de rendu : ex01/
Fichiers a rendre : ft_list_push_back.c, ft_list.h
Fonctions Autorisées : ft_create_elem

Remarques : n/a

Ecrire la fonction ft_list _push_back qui ajoute & la fin de la liste un nouvel
élément de type t_list.

Elle devra assigner data au parametre fourni.

Elle mettra a jour, si nécessaire, le pointeur sur le début de liste.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list, void *data);

Chapitre V

Exercice 02 : ft_list push front

l Exercice : 02
14
'4

ft_ list_ push_ front

Dossier de rendu : ex02/

Fichiers a rendre : ft_list_push_front.c, ft_list.h

Fonctions Autorisées : ft_create_elem

Remarques : n/a

Ecrire la fonction ft_list push front qui ajoute au début de la liste un nouvel
élément de type t_list.

Elle devra assigner data au parametre fourni.

Elle mettra a jour, si nécéssaire, le pointeur sur le début de liste.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list, void *data);

Chapitre VI

Exercice 03 : ft list size

I Exercice : 03
14
'4

ft list size

Dossier de rendu : ex03/

Fichiers a rendre : ft_list_size.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_size qui renvoie le nombre d’éléments dans la liste.
e Elle devra étre prototypée de la fagon suivante :

int (t_list *begin_list);

Chapitre VII

Exercice 04 : ft list last

I Exercice : 04
14
'4

ft list last

Dossier de rendu : ex04/
Fichiers a rendre : ft_list_last.c, ft_list.h
Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_last qui renvoie le dernier élément de la liste.

e Elle devra étre prototypée de la fagon suivante :

t_list * (t_list *begin_list);

10

Chapitre VIII

Exercice 05 : ft_list push params

l Exercice : 05
14
'4

ft_ list_ push_ params

Dossier de rendu : ex05/

Fichiers a rendre : ft_list_push_params.c, ft_list.h

Fonctions Autorisées : ft_create_elem

Remarques : n/a

Ecrire la fonction ft_list push params qui crée une nouvelle liste en y mettant
les parametres de la ligne de commande.

e Le premier argument se retrouvera a la fin de la liste.

L’adresse du premier maillon de la liste est renvoyée.
e Elle devra étre prototypée de la fagon suivante :

t_list * (int ac, char **av);

11

Chapitre IX

Exercice 06 : ft list clear

I Exercice : 06
14
'4

ft_list clear

Dossier de rendu : ex06/

Fichiers a rendre : ft_list_clear.c, ft_list.h

Fonctions Autorisées : free

Remarques : n/a

e Ecrire la fonction ft_list_clear qui détruit I'ensemble des maillons de la liste.
e Elle assignera ensuite le pointeur sur la liste a nul.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list);

12

Chapitre X

Exercice 07 : ft list at

I Exercice : 07
14
'4

ft list at

Dossier de rendu : ex07/
Fichiers a rendre : ft_list_at.c, ft_list.h
Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_at qui renvoie le n-ieme élément de la liste.
e Elle renverra un pointeur nul en cas d’erreur.

e Elle devra étre prototypée de la fagon suivante :

t_list * (t_list *begin_list, unsigned int nbr);

13

Chapitre XI

Exercice 08 : ft list reverse

I Exercice : 08
14
'4

ft list reverse

Dossier de rendu : ex08/

Fichiers a rendre : ft_list_reverse.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_reverse qui inverse l'ordre des éléments de la liste.
Seuls les jeux de pointeurs sont admis.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list);

14

Chapitre XII

Exercice 09 : ft list foreach

I Exercice : 09
14
'4

ft_list foreach

Dossier de rendu : ex09/
Fichiers a rendre : ft_list_foreach.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_foreach qui applique une fonction donnée en paramétre
a I'information contenue dans chaque maillon de la liste.

e Elle devra étre prototypée de la fagon suivante :

(t_list *begin_list, void (*f)(void *));

e La fonction pointée par f sera utilisée de la facon suivante :

(*f) (list_ptr->data);

15

Chapitre XIII

Exercice 10 : ft list foreach_ if

I Exercice : 10
14
'4

ftlist foreach_ if

Dossier de rendu : ex10/
Fichiers a rendre : ft_list_foreach_if.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_foreach if qui applique une fonction donnée en para-
metre a 'information contenue dans certains maillons de la liste. Une information
de référence ainsi qu'une fonction de comparaison nous permettent de sélectionner
les bons maillons de la liste : ceux qui sont "égaux" avec 'information de référence.

e Elle devra étre prototypée de la fagon suivante :

ft_list_foreach_if (t_list *begin_list, void (*f)(void *), void *data_ref, int (*cmp) ()

e Les fonctions pointées par £ et par cmp seront utilisées de la fagon suivante :

(*f) (list_ptr->data) ;

(*cmp) (list_ptr->data, data_ref);

La fonction cmp pourrait é&tre par exemple ft_strcmp...

=

16

Chapitre XIV

Exercice 11 : ft list find

l Exercice : 11
14
'4

ft list find

Dossier de rendu : ex11/
Fichiers a rendre : ft_list_find.c, ft_list.h
Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_find qui renvoie I’adresse du premier maillon dont la
donnée est "égale" a la donnée de référence.

e Elle devra étre prototypée de la fagon suivante :

t_list * (t_list *begin_list, void *data_ref, int (*cmp)());

17

Chapitre XV

Exercice 12 : ft list remove if

l Exercice : 12
14
'4

ft list remove if

Dossier de rendu : ex12/

Fichiers a rendre : ft_list_remove_if.c, ft_list.h

Fonctions Autorisées : free

Remarques : n/a

e Ecrire la fonction ft_list_remove if qui efface de la liste tous les élements dont
la donnée est "égale" a la donnée de référence.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list, void *data_ref, int (*cmp)());

18

Chapitre XVI

Exercice 13 : ft_list merge

l Exercice : 13
14
'4

ft_ list_ merge

Dossier de rendu : ex13/

Fichiers a rendre : ft_list_merge.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_merge qui met les élements d’une liste begin2 & la fin
d’une autre liste beginl.

e La création d’éléments n’est pas autorisée.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_listl, t_list *begin_list2);

19

Chapitre XVII

Exercice 14 : ft list sort

l Exercice : 14
14
'4

ft_list_sort

Dossier de rendu : ex14/

Fichiers a rendre : ft_list_sort.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_sort qui trie par ordre croissant le contenu de la liste,
en comparant deux maillons grace a une fonction de comparaison de données des
deux maillons.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_list, int (kcmp) ());

La fonction cmp pourrait étre par exemple ft_strcmp.

=

20

Chapitre XVIII

Exercice 15 : ft list reverse fun

l Exercice : 15
14
'4

ft list reverse fun

Dossier de rendu : ex15/

Fichiers a rendre : ft_list_reverse fun.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_list_reverse_fun qui inverse 'ordre des éléments de la liste.
Seuls les jeux de pointeurs sont admis.

e Elle devra étre prototypée de la fagon suivante :

void (t_list *begin_list);

21

Chapitre XIX

Exercice 16 : ft sorted list insert

l Exercice : 16
14
'4

ft sorted list insert

Dossier de rendu : ex16/

Fichiers a rendre : ft_sorted_list_insert.c, ft_list.h

Fonctions Autorisées : ft_create_elem

Remarques : n/a

e Ecrire la fonction ft_sorted_list_insert qui crée un nouvel élément et 'insere
dans une liste triée de sorte que la liste reste triée par ordre croissant.

e Elle devra étre prototypée de la fagon suivante :

(t_list *#*begin_list, void *data, int (xcmp) ());

22

Chapitre XX

Exercice 17 : ft sorted_ list merge

l Exercice : 17
14
'4

ft_ sorted_ list__merge

Dossier de rendu : ex17/
Fichiers a rendre : ft_sorted_list_merge.c, ft_list.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction ft_sorted_list_merge qui intégre les élements d’une liste triée
begin2 dans une autre liste triée beginl, de sorte que la liste beginl reste triée
par ordre croissant.

e Elle devra étre prototypée de la fagon suivante :

(t_list **begin_listl, t_list *begin_list2, int (xcmp) O));

23

	Consignes
	Préambule
	Exercice 00 : ft_create_elem
	Exercice 01 : ft_list_push_back
	Exercice 02 : ft_list_push_front
	Exercice 03 : ft_list_size
	Exercice 04 : ft_list_last
	Exercice 05 : ft_list_push_params
	Exercice 06 : ft_list_clear
	Exercice 07 : ft_list_at
	Exercice 08 : ft_list_reverse
	Exercice 09 : ft_list_foreach
	Exercice 10 : ft_list_foreach_if
	Exercice 11 : ft_list_find
	Exercice 12 : ft_list_remove_if
	Exercice 13 : ft_list_merge
	Exercice 14 : ft_list_sort
	Exercice 15 : ft_list_reverse_fun
	Exercice 16 : ft_sorted_list_insert
	Exercice 17 : ft_sorted_list_merge

