
Piscine C
Jour 11

Staff 42 piscine@42.fr

Résumé: Ce document est le sujet du jour 11 de la piscine C de 42.

piscine@42.fr

Table des matières
I Consignes 2

II Préambule 4

III Exercice 00 : ft_create_elem 6

IV Exercice 01 : ft_list_push_back 7

V Exercice 02 : ft_list_push_front 8

VI Exercice 03 : ft_list_size 9

VII Exercice 04 : ft_list_last 10

VIII Exercice 05 : ft_list_push_params 11

IX Exercice 06 : ft_list_clear 12

X Exercice 07 : ft_list_at 13

XI Exercice 08 : ft_list_reverse 14

XII Exercice 09 : ft_list_foreach 15

XIII Exercice 10 : ft_list_foreach_if 16

XIV Exercice 11 : ft_list_find 17

XV Exercice 12 : ft_list_remove_if 18

XVI Exercice 13 : ft_list_merge 19

XVII Exercice 14 : ft_list_sort 20

XVIII Exercice 15 : ft_list_reverse_fun 21

XIX Exercice 16 : ft_sorted_list_insert 22

XX Exercice 17 : ft_sorted_list_merge 23

1

Chapitre I

Consignes

• Seule cette page servira de référence : ne vous fiez pas aux bruits de couloir.

• Le sujet peut changer jusqu’à une heure avant le rendu.

• Attention aux droits de vos fichiers et de vos répertoires.

• Vous devez suivre la procédure de rendu pour tous vos exercices.

• Vos exercices seront corrigés par vos camarades de piscine.

• En plus de vos camarades, vous serez corrigés par un programme appelé la Mouli-
nette.

• La Moulinette est très stricte dans sa notation. Elle est totalement automatisée. Il
est impossible de discuter de sa note avec elle. Soyez d’une rigueur irréprochable
pour éviter les surprises.

• La Moulinette n’est pas très ouverte d’esprit. Elle ne cherche pas à comprendre le
code qui ne respecte pas la Norme.

• L’utilisation d’une fonction interdite est un cas de triche. Toute triche est sanction-
née par la note de -42.

• Si ft_putchar() est une fonction autorisée, nous compilerons avec notre ft_putchar.c.

• Vous ne devrez rendre une fonction main() que si nous vous demandons un programme.

• Les exercices sont très précisément ordonnés du plus simple au plus complexe.
En aucun cas nous ne porterons attention ni ne prendrons en compte un exercice
complexe si un exercice plus simple n’est pas parfaitement réussi.

• La Moulinette compile avec les flags -Wall -Wextra -Werror.

• Si votre programme ne compile pas, vous aurez 0.

• Vous ne devez laisser dans votre répertoire aucun autre fichier que ceux explicite-
ment specifiés par les énoncés des exercices.

• Vous avez une question ? Demandez à votre voisin de droite. Sinon, essayez avec
votre voisin de gauche.

2

Piscine C Jour 11

• Votre manuel de référence s’appelle Google / man / Internet /

• Pensez à discuter sur le forum Piscine de votre Intra !

• Lisez attentivement les exemples. Ils pourraient bien requérir des choses qui ne sont
pas autrement précisées dans le sujet...

• Réfléchissez. Par pitié, par Odin ! Nom d’une pipe.

• Pour les exos sur les listes, on utilisera la structure suivante :

typedef struct s_list
{

struct s_list *next;
void *data;

} t_list;

• Vous devez mettre cette structure dans un fichier ft_list.h et le rendre à chaque
exercice.

• A partir de l’exercice 01 nous utiliserons notre ft_create_elem, prenez les disposi-
tions nécessaires (il pourrait être intéressant d’avoir son prototype dans ft_list.h...).

3

Chapitre II

Préambule

SPOILER ALERT
NE LISEZ PAS LA PAGE SUIVANTE

4

Piscine C Jour 11

Vous l’aurez voulu.
• Dans Star Wars, Dark Vador est le père de Luke Skywalker.

• Dans The Usual Suspects, Verbal est Keyser Soze.

• Dans Fight Club, Tyler Durden et le narrateur sont la même personne.

• Dans Sixième Sens, Bruce Willis est mort depuis le début.

• Dans Les Autres, les habitants de la maison sont les fantômes et vice-versa.

• Dans Bambi, la mère de Bambi meurt.

• Dans Le Village, les monstres sont les villageois et l’action se situe, en réalité,
dans notre époque.

• Dans Harry Potter, Dumbledore meurt.

• Dans La Planète des Singes, l’action se situe sur Terre.

• Dans Le Trône de Fer, Robb Stark et Joffrey Baratheon meurent le soir de leurs
noces.

• Dans Twilight, les vampires brillent au soleil.

• Dans Stargate SG-1, Saison 1, Episode 18, O’Neill et Carter sont en Antarc-
tique.

• Dans The Dark Knight Rises, Miranda Tate est Talia Al’Gul.

• Dans Super Mario Bros, la princesse est dans un autre château.

5

Chapitre III

Exercice 00 : ft_create_elem

Exercice : 00

ft_create_elem
Dossier de rendu : ex00/

Fichiers à rendre : ft_create_elem.c, ft_list.h
Fonctions Autorisées : malloc
Remarques : n/a

• Écrire la fonction ft_create_elem qui crée un nouvel élément de type t_list.

• Elle devra assigner data au paramètre fournis et next à NULL.

• Elle devra être prototypée de la façon suivante :

t_list *ft_create_elem(void *data);

6

Chapitre IV

Exercice 01 : ft_list_push_back

Exercice : 01

ft_list_push_back
Dossier de rendu : ex01/

Fichiers à rendre : ft_list_push_back.c, ft_list.h
Fonctions Autorisées : ft_create_elem
Remarques : n/a

• Écrire la fonction ft_list_push_back qui ajoute à la fin de la liste un nouvel
élément de type t_list.

• Elle devra assigner data au paramètre fourni.

• Elle mettra à jour, si nécessaire, le pointeur sur le début de liste.

• Elle devra être prototypée de la façon suivante :

void ft_list_push_back(t_list **begin_list, void *data);

7

Chapitre V

Exercice 02 : ft_list_push_front

Exercice : 02

ft_list_push_front
Dossier de rendu : ex02/

Fichiers à rendre : ft_list_push_front.c, ft_list.h
Fonctions Autorisées : ft_create_elem
Remarques : n/a

• Écrire la fonction ft_list_push_front qui ajoute au début de la liste un nouvel
élément de type t_list.

• Elle devra assigner data au paramètre fourni.

• Elle mettra à jour, si nécéssaire, le pointeur sur le début de liste.

• Elle devra être prototypée de la façon suivante :

void ft_list_push_front(t_list **begin_list, void *data);

8

Chapitre VI

Exercice 03 : ft_list_size

Exercice : 03

ft_list_size
Dossier de rendu : ex03/

Fichiers à rendre : ft_list_size.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_size qui renvoie le nombre d’éléments dans la liste.

• Elle devra être prototypée de la façon suivante :

int ft_list_size(t_list *begin_list);

9

Chapitre VII

Exercice 04 : ft_list_last

Exercice : 04

ft_list_last
Dossier de rendu : ex04/

Fichiers à rendre : ft_list_last.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_last qui renvoie le dernier élément de la liste.

• Elle devra être prototypée de la façon suivante :

t_list *ft_list_last(t_list *begin_list);

10

Chapitre VIII

Exercice 05 : ft_list_push_params

Exercice : 05

ft_list_push_params
Dossier de rendu : ex05/

Fichiers à rendre : ft_list_push_params.c, ft_list.h
Fonctions Autorisées : ft_create_elem
Remarques : n/a

• Écrire la fonction ft_list_push_params qui crée une nouvelle liste en y mettant
les paramètres de la ligne de commande.

• Le premier argument se retrouvera à la fin de la liste.

• L’adresse du premier maillon de la liste est renvoyée.

• Elle devra être prototypée de la façon suivante :

t_list *ft_list_push_params(int ac, char **av);

11

Chapitre IX

Exercice 06 : ft_list_clear

Exercice : 06

ft_list_clear
Dossier de rendu : ex06/

Fichiers à rendre : ft_list_clear.c, ft_list.h
Fonctions Autorisées : free
Remarques : n/a

• Écrire la fonction ft_list_clear qui détruit l’ensemble des maillons de la liste.

• Elle assignera ensuite le pointeur sur la liste à nul.

• Elle devra être prototypée de la façon suivante :

void ft_list_clear(t_list **begin_list);

12

Chapitre X

Exercice 07 : ft_list_at

Exercice : 07

ft_list_at
Dossier de rendu : ex07/

Fichiers à rendre : ft_list_at.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_at qui renvoie le n-ième élément de la liste.

• Elle renverra un pointeur nul en cas d’erreur.

• Elle devra être prototypée de la façon suivante :

t_list *ft_list_at(t_list *begin_list, unsigned int nbr);

13

Chapitre XI

Exercice 08 : ft_list_reverse

Exercice : 08

ft_list_reverse
Dossier de rendu : ex08/

Fichiers à rendre : ft_list_reverse.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_reverse qui inverse l’ordre des éléments de la liste.
Seuls les jeux de pointeurs sont admis.

• Elle devra être prototypée de la façon suivante :

void ft_list_reverse(t_list **begin_list);

14

Chapitre XII

Exercice 09 : ft_list_foreach

Exercice : 09

ft_list_foreach
Dossier de rendu : ex09/

Fichiers à rendre : ft_list_foreach.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_foreach qui applique une fonction donnée en paramètre
à l’information contenue dans chaque maillon de la liste.

• Elle devra être prototypée de la façon suivante :

void ft_list_foreach(t_list *begin_list, void (*f)(void *));

• La fonction pointée par f sera utilisée de la façon suivante :

(*f)(list_ptr->data);

15

Chapitre XIII

Exercice 10 : ft_list_foreach_if

Exercice : 10

ft_list_foreach_if
Dossier de rendu : ex10/

Fichiers à rendre : ft_list_foreach_if.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_foreach_if qui applique une fonction donnée en para-
mètre à l’information contenue dans certains maillons de la liste. Une information
de référence ainsi qu’une fonction de comparaison nous permettent de sélectionner
les bons maillons de la liste : ceux qui sont "égaux" avec l’information de référence.

• Elle devra être prototypée de la façon suivante :

void ft_list_foreach_if(t_list *begin_list, void (*f)(void *), void *data_ref, int (*cmp)())

• Les fonctions pointées par f et par cmp seront utilisées de la façon suivante :

(*f)(list_ptr->data);
(*cmp)(list_ptr->data, data_ref);

La fonction cmp pourrait être par exemple ft_strcmp...

16

Chapitre XIV

Exercice 11 : ft_list_find

Exercice : 11

ft_list_find
Dossier de rendu : ex11/

Fichiers à rendre : ft_list_find.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_find qui renvoie l’adresse du premier maillon dont la
donnée est "égale" à la donnée de référence.

• Elle devra être prototypée de la façon suivante :

t_list *ft_list_find(t_list *begin_list, void *data_ref, int (*cmp)());

17

Chapitre XV

Exercice 12 : ft_list_remove_if

Exercice : 12

ft_list_remove_if
Dossier de rendu : ex12/

Fichiers à rendre : ft_list_remove_if.c, ft_list.h
Fonctions Autorisées : free
Remarques : n/a

• Écrire la fonction ft_list_remove_if qui efface de la liste tous les élements dont
la donnée est "égale" à la donnée de référence.

• Elle devra être prototypée de la façon suivante :

void ft_list_remove_if(t_list **begin_list, void *data_ref, int (*cmp)());

18

Chapitre XVI

Exercice 13 : ft_list_merge

Exercice : 13

ft_list_merge
Dossier de rendu : ex13/

Fichiers à rendre : ft_list_merge.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_merge qui met les élements d’une liste begin2 à la fin
d’une autre liste begin1.

• La création d’éléments n’est pas autorisée.

• Elle devra être prototypée de la façon suivante :

void ft_list_merge(t_list **begin_list1, t_list *begin_list2);

19

Chapitre XVII

Exercice 14 : ft_list_sort

Exercice : 14

ft_list_sort
Dossier de rendu : ex14/

Fichiers à rendre : ft_list_sort.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_sort qui trie par ordre croissant le contenu de la liste,
en comparant deux maillons grâce à une fonction de comparaison de données des
deux maillons.

• Elle devra être prototypée de la façon suivante :

void ft_list_sort(t_list **begin_list, int (*cmp)());

La fonction cmp pourrait être par exemple ft_strcmp.

20

Chapitre XVIII

Exercice 15 : ft_list_reverse_fun

Exercice : 15

ft_list_reverse_fun
Dossier de rendu : ex15/

Fichiers à rendre : ft_list_reverse_fun.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_list_reverse_fun qui inverse l’ordre des éléments de la liste.
Seuls les jeux de pointeurs sont admis.

• Elle devra être prototypée de la façon suivante :

void ft_list_reverse_fun(t_list *begin_list);

21

Chapitre XIX

Exercice 16 : ft_sorted_list_insert

Exercice : 16

ft_sorted_list_insert
Dossier de rendu : ex16/

Fichiers à rendre : ft_sorted_list_insert.c, ft_list.h
Fonctions Autorisées : ft_create_elem
Remarques : n/a

• Écrire la fonction ft_sorted_list_insert qui crée un nouvel élément et l’insère
dans une liste triée de sorte que la liste reste triée par ordre croissant.

• Elle devra être prototypée de la façon suivante :

void ft_sorted_list_insert(t_list **begin_list, void *data, int (*cmp)());

22

Chapitre XX

Exercice 17 : ft_sorted_list_merge

Exercice : 17

ft_sorted_list_merge
Dossier de rendu : ex17/

Fichiers à rendre : ft_sorted_list_merge.c, ft_list.h
Fonctions Autorisées : Aucune
Remarques : n/a

• Écrire la fonction ft_sorted_list_merge qui intègre les élements d’une liste triée
begin2 dans une autre liste triée begin1, de sorte que la liste begin1 reste triée
par ordre croissant.

• Elle devra être prototypée de la façon suivante :

void ft_sorted_list_merge(t_list **begin_list1, t_list *begin_list2, int (*cmp)());

23

	Consignes
	Préambule
	Exercice 00 : ft_create_elem
	Exercice 01 : ft_list_push_back
	Exercice 02 : ft_list_push_front
	Exercice 03 : ft_list_size
	Exercice 04 : ft_list_last
	Exercice 05 : ft_list_push_params
	Exercice 06 : ft_list_clear
	Exercice 07 : ft_list_at
	Exercice 08 : ft_list_reverse
	Exercice 09 : ft_list_foreach
	Exercice 10 : ft_list_foreach_if
	Exercice 11 : ft_list_find
	Exercice 12 : ft_list_remove_if
	Exercice 13 : ft_list_merge
	Exercice 14 : ft_list_sort
	Exercice 15 : ft_list_reverse_fun
	Exercice 16 : ft_sorted_list_insert
	Exercice 17 : ft_sorted_list_merge

