Piscine C

Jour 13

Staff 42 piscine@42.fr

Résumé: Ce document est le sujet du jour 13 de la piscine C de 42.

piscine@42.fr

Table des matiéres

II

I11

IV

VI

VII

VIII

IX

XI

XII

XIII

Consignes

Préambule
Exercice 00
Exercice 01
Exercice 02
Exercice 03
Exercice 04
Exercice 05

Exercice 06

Exercice 07 :

: btree create node
: btree__apply_ prefix
: btree__apply__infix

: btree__apply__suffix
: btree insert data
: btree search_item

: btree level count

btree__apply__by_ level

Consignes intermédiaires

Exercice 08

Exercice 09

: rb__insert

: rb__remove

10

11

12

13

14

15

Chapitre 1

Consignes

e Secule cette page servira de référence : ne vous fiez pas aux bruits de couloir.
e Le sujet peut changer jusqu’a une heure avant le rendu.
e Attention aux droits de vos fichiers et de vos répertoires.

e Vous devez suivre la procédure de rendu pour tous vos exercices.

e Vos exercices seront corrigés par vos camarades de piscine.

e En plus de vos camarades, vous serez corrigés par un programme appelé la Mouli-
nette.

e La Moulinette est tres stricte dans sa notation. Elle est totalement automatisée. Il
est impossible de discuter de sa note avec elle. Soyez d’une rigueur irréprochable
pour éviter les surprises.

e La Moulinette n’est pas tres ouverte d’esprit. Elle ne cherche pas a comprendre le
code qui ne respecte pas la Norme.

e [’utilisation d’une fonction interdite est un cas de triche. Toute triche est sanction-
née par la note de -42.

e Sift_ putchar() est une fonction autorisée, nous compilerons avec notre ft_putchar. c.
e Vous ne devrez rendre une fonction main() que si nous vous demandons un programme.

e Les exercices sont tres précisément ordonnés du plus simple au plus complexe.
En aucun cas nous ne porterons attention ni ne prendrons en compte un exercice
complexe si un exercice plus simple n’est pas parfaitement réussi.

e La Moulinette compile avec les flags -Wall -Wextra -Werror.
e Si votre programme ne compile pas, vous aurez 0.

e Vous ne devez laisser dans votre répertoire aucun autre fichier que ceux explicite-
ment specifiés par les énoncés des exercices.

e Vous avez une question? Demandez a votre voisin de droite. Sinon, essayez avec
votre voisin de gauche.

Piscine C Jour 13

e Votre manuel de référence s’appelle Google / man / Internet /
e Pensez a discuter sur le forum Piscine de votre Intra!

e Lisez attentivement les exemples. Ils pourraient bien requérir des choses qui ne sont
pas autrement précisées dans le sujet...

e Réfléchissez. Par pitié, par Odin! Nom d’une pipe.
e Pour les exos d’aujourd’hui, on utilisera la structure suivante :

typedef struct s_btree
{

struct s_btree *left;
struct s_btree *right;

void *item;
t_btree;

e Vous devez mettre cette structure dans un fichier ft_btree.h et le rendre a chaque
exercice.

e A partir de l'exercice 01 nous utiliserons notre btree_ create node, prenez les
dispositions nécessaires (il pourrait étre intéressant d’avoir son prototype dans
ft_ btree.h...).

Chapitre 11

Préambule

Voici la liste des releases de Venom :

- In League with Satan (single, 1980)
- Welcome to Hell (1981)

- Black Metal (1982)

- Bloodlust (single, 1983)

- Die Hard (single, 1983)

- Warhead (single, 1984)

- At War with Satan (1984)

- Hell at Hammersmith (EP, 1985)
- American Assault (EP, 1985)

- Canadian Assault (EP, 1985)

- French Assault (EP, 1985)

- Japanese Assault (EP, 1985)

- Scandinavian Assault (EP, 1985)
- Manitou (single, 1985)

- Nightmare (single, 1985)

- Possessed (1985)

- German Assault (EP, 1987)

- Calm Before the Storm (1987)

- Prime Evil (1989)

- Tear Your Soul Apart (EP, 1990)
- Temples of Ice (1991)

- The Waste Lands (1992)

- Venom ’96 (EP, 1996)

- Cast in Stone (1997)

- Resurrection (2000)

- Anti Christ (single, 2006)

- Metal Black (2006)

- Hell (2008)

- Fallen Angels (2011)

Le sujet d’aujourd’hui est plus facile si vous travaillez en écoutant Venom.

Chapitre 111

Exercice 00 : btree create node

l Exercice : 00
14
'4

btree create node

Dossier de rendu : ex00/

Fichiers a rendre : btree_create_node.c, ft_btree.h

Fonctions Autorisées : malloc

Remarques : n/a

e Ecrire la fonction btree_create_node qui alloue un nouvel élément, initialise son
item a la valeur du parametre et tous les autres éléments a 0.

e [’adresse de la node créée est renvoyée.

e Elle devra étre prototypée de la fagon suivante :

t_btree * (void *item) ;

Chapitre IV

Exercice 01 : btree_apply prefix

l Exercice : 01
14
'4

btree_apply_ prefix

Dossier de rendu : ex01/

Fichiers a rendre : btree_apply_prefix.c, ft_btree.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction btree_apply prefix qui applique la fonction passée en para-
metre a 'item de chaque node, en parcourant 1’arbre de maniere prefix.

e Elle devra étre prototypée de la fagon suivante :

(t_btree *root, void (*applyf) (void *));

Chapitre V

Exercice 02 : btree_ apply infix

l Exercice : 02
14
'4

btree_apply_ infix

Dossier de rendu : ex02/

Fichiers a rendre : btree_apply_infix.c, ft_btree.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction btree_apply_infix qui applique la fonction passée en parametre
a I'item de chaque node, en parcourant I’arbre de maniére infix.

e Elle devra étre prototypée de la fagon suivante :

(t_btree *root, void (xapplyf) (void *));

Chapitre VI

Exercice 03 : btree_apply suffix

l Exercice : 03
14
'4

btree_apply_ suffix

Dossier de rendu : ex03/

Fichiers a rendre : btree_apply_suffix.c, ft_btree.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction btree_apply suffix qui applique la fonction passée en para-
metre a I’item de chaque node, en parcourant I’arbre de maniere suffix.

e Elle devra étre prototypée de la fagon suivante :

(t_btree *root, void (*applyf) (void *));

Chapitre VII

Exercice 04 : btree insert data

l Exercice : 04
14
'4

btree insert data

Dossier de rendu : ex04/

Fichiers a rendre : btree_insert_data.c, ft_btree.h

Fonctions Autorisées : btree_create node

Remarques : n/a

e Ecrire la fonction btree_insert_data qui insére I’élément item dans un arbre.
L’arbre passé en parametre sera trié : pour chaque node tous les élements inférieurs
se situent dans la partie gauche et tous les éléments supérieurs ou égaux a droite. On
enverra en parametre une fonction de comparaison ayant le méme comportement
que strcmp.

e Le parametre root pointe sur le noeud racine de I'arbre. Lors du premier appel, il
pointe sur NULL.

e Elle devra étre prototypée de la fagon suivante :

(t_btree **root, void *item, int (xcmpf) (void *, void *));

Chapitre VIII

Exercice 05 : btree_ search item

l Exercice : 05
14
'4

btree search item

Dossier de rendu : ex05/

Fichiers a rendre : btree_search_item.c, ft_btree.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction btree_search_item qui retourne le premier élement correspon-
dant a la donnée de référence passée en parametre. L’arbre devra étre parcouru de
maniere infix. Si ’élément n’est pas trouvé, la fonction devra retourner NULL.

e Elle devra étre prototypée de la fagon suivante :

(t_btree *root, void *data_ref, int (xcmpf) (void *, void *));

10

Chapitre IX

Exercice 06 : btree level count

l Exercice : 06
14
'4

btree_level count

Dossier de rendu : ex06/

Fichiers a rendre : btree_level count.c, ft_btree.h

Fonctions Autorisées : Aucune

Remarques : n/a

e Ecrire la fonction btree level count qui retourne la taille de la plus grande
branche passée en parametre.

e Elle devra étre prototypée de la fagon suivante :

int (t_btree *root);

11

Chapitre X

Exercice 07 : btree_apply by level

l Exercice : 07
14
'4

btree_apply_ by_ level

Dossier de rendu : ex07/

Fichiers a rendre : btree_apply_by_level.c, ft_btree.h

Fonctions Autorisées : malloc, free

Remarques : n/a

e Ecrire la fonction btree_apply by _level qui applique la fonction passée en pa-
rametre a chaque noeud de 'arbre. L’arbre doit étre parcouru étage par étage. La
fonction appelée prendra trois parametres :

o Le premier parametre, de type void *, correspond a l'item du node;

o Le second parametre, de type int, correspond au niveau sur lequel on se trouve :
0 pour le root, 1 pour ses enfants, 2 pour ses petits-enfants, etc. ;

o Le troisieme parametre, de type int, vaut 1 s’il s’agit du premier node du niveau,
0 sinon.

e Elle devra étre prototypée de la fagon suivante :

void btree_apply_by_level(t_btree *root, void (*applyf) (void *item, int current_level, int is_firs{

12

Chapitre XI

Consignes intermédiaires

e Nous allons maintenant travailler avec des arbres rouges et noirs.

enum e_rb_color

{

RB_BLACK,
RB_RED
};

typedef struct s_rb_node

{
struct s_rb_node *parent;
struct s_rb_node *left;
struct s_rb_node *right;
void *data;
enum e_rb_color color;

} t_rb_node;

e Note : cette structure reprend a son début les mémes champs que la structure pré-
cédente. Il est ainsi possible de réutiliser les fonctions déja écrites avec les arbres
rouges et noirs. Pour ceux qui ont un peu d’avance, il s’agit ici d’une forme rudi-
mentaire de polymorphisme en C.

e Vous devez mettre cette structure dans un fichier ft_btree_rb.h et le rendre a
chaque exercice.

13

Chapitre XII

Exercice 08 : rb__insert

l Exercice : 08
14
'4

rb_insert

Dossier de rendu : ex08/

Fichiers a rendre : rb_insert.c, ft_btree_rb.h

Fonctions Autorisées : malloc

Remarques : n/a

e Ecrire la fonction rb_insert qui ajoute une nouvelle donnée dans ’arbre de maniére
a ce qu’il continue de respecter les contraintes d’un arbre rouge et noir. Le parametre
root pointe sur le noeud racine de 'arbre. Lors du premier appel, il pointe sur
NULL. On enverra aussi en parametre une fonction de comparaison ayant le méme
comportement que strcmp.

e Elle devra étre prototypée de la facon suivante :

(struct s_rb_node **root, void *data, int (kcmpf) (void *, void *));

14

Chapitre XIII

Exercice 09 : rb remove

l Exercice : 09
14
'4

rb_remove

Dossier de rendu : ex09/

Fichiers a rendre : rb_remove.c, ft_btree_rb.h

Fonctions Autorisées : free

Remarques : n/a

e Ecrire la fonction rb_remove qui supprime une donnée dans I’arbre de maniére &
ce qu’il continue de respecter les contraintes d’'un arbre rouge et noir. Le parametre
root pointe sur le noeud racine de I'arbre. On enverra aussi en parametre une
fonction de comparaison ayant le méme comportement que strcmp, ainsi qu'une
pointeur sur fonction freef qui sera appelée avec en parametre 1’élément de ’arbre
a supprimer.

e Elle devra étre prototypée de la fagon suivante :

(struct s_rb_node **root, void *data, int (kcmpf) (void *, void *), void (xfreef) (void

15

	Consignes
	Préambule
	Exercice 00 : btree_create_node
	Exercice 01 : btree_apply_prefix
	Exercice 02 : btree_apply_infix
	Exercice 03 : btree_apply_suffix
	Exercice 04 : btree_insert_data
	Exercice 05 : btree_search_item
	Exercice 06 : btree_level_count
	Exercice 07 : btree_apply_by_level
	Consignes intermédiaires
	Exercice 08: rb_insert
	Exercice 09: rb_remove

