
Fillit
Can you feel it ?

Team pedago pedago@staff.42.fr

Résumé: c’est l’histoire d’une pièce de Tetris, d’un petit carré et d’un(e)
codeur/codeuse qui entrent dans un bar...

pedago@staff.42.fr

Table des matières
I Préambule 2

II Introduction 3

III Objectifs 4

IV Consignes générales 5

V Partie obligatoire 6
V.1 L’entrée du programme . 6
V.2 Le plus petit carré . 9
V.3 La sortie du programme . 10

VI Rendu et peer-évaluation 12

1

Chapitre I

Préambule

2

Chapitre II

Introduction

Fillit est un projet vous permettant de decouvrir et/ou de vous familiariser avec
une problematique récurrente en programmation : la recherche d’une solution optimale
parmi un très grand nombre de possibilités, dans un délai raisonable. Dans le cas de ce
projet, il s’agira d’agencer des Tetriminos entre eux et de déterminer le plus petit carré
possible pouvant les acueillir.

Un Tetriminos est une figure géométrique formée de 4 blocs que vous connaissez
grâce au célèbre jeu Tetris.

3

Chapitre III

Objectifs

Fillit ne consiste pas à recoder Tetris, mais reste une variante du jeu dans l’esprit.
Votre programme prendra en paramètre un fichier décrivant une liste de Tetriminos
qu’il devra ensuite agencer entre eux pour former le plus petit carré possible. Le but est
bien entendu de trouver ce plus petit carré le plus rapidement possible malgré un nombre
d’agencements qui croît de manière explosive avec chaque pièce supplémentaire.

Vous devrez donc bien réflechir à vos structures de données et à votre algorithme de
résolution pour que votre programme réponde avant l’an 3000.

4

Chapitre IV

Consignes générales

• Votre projet doit être en C et à la Norme.

• Les fonctions autorisées sont : exit, open, close, write, read, malloc et free.

• Votre Makefile devra compiler votre rendu et proposer au moins les règles sui-
vantes : all, clean, fclean et re.

• Vous devez compiler votre exécutable avec les flags Wall, Wextra et Werror. Tout
autre flag, et en particulier d’optimisation, est interdit.

• L’exécutable doit s’appeller fillit et se trouver dans le répertoire racine de votre
dépot.

• Si vous voulez ajouter un fichier externe à votre programme (autrement dit : qui ne
sera pas compilé), il devra impérativement s’appeler extern_file.txt, et devra
se trouver à la racine de votre dépôt.

5

Chapitre V

Partie obligatoire

V.1 L’entrée du programme
Votre exécutable doit prendre en paramètre un (et un seul) fichier décrivant la liste

des Tetriminos à agencer. Ce fichier est formaté de façon très précise : chaque description
d’un Tetriminos est sur 4 lignes et deux Tetriminos sont séparés par une ligne vide.

Si le nombre de paramètres passés à votre executable est différent de 1, votre pro-
gramme doit afficher son usage et quitter proprement. Si vous ingorez ce qu’est un usage,
lancez la commande cp sans argument dans votre shell pour vous faire une idee.

La description d’un Tetriminos doit respecter les règles suivantes :

• Exactement 4 lignes de 4 caractères suivis d’un retour à la ligne.
• Un Tetriminos est une pièce de Tetris classique composée de 4 blocs.
• Chaque caractère doit être, soit un ’#’ lorsque la case correspond à l’un des 4

blocs d’un Tetriminos, soit un ’.’ lorsque la case est vide.
• Chaque bloc d’un Tetriminos doit être en contact avec au moins un autre bloc

sur l’un ou l’autre de ses 4 côtés.

Quelques exemples de descriptions de Tetriminos valides :

.... ######.#..

..#### .##. ###. ##.. .##.

..#. ..## ##.. ##.. #... ..#.

..#. ..## ##.. #... ..#.

Quelques exemples de descriptions de Tetriminos invalides :

...# ##... #.## #### ,,,, .HH.
...# ..#. ##... ## #### #### HH..
.... .#.. #. #### ,,,,
.... #... ##.. #### ,,,,

6

Fillit Can you feel it ?

Chaque Tetriminos n’occupant que 4 cases des 16 cases disponibles il est donc pos-
sible de decrire le même Tetriminos de plusieurs façons différentes. Toutefois, la rotation
d’un Tetriminos décrit un Tetriminos différent de l’original dans le cadre de ce projet.
Cela signifie qu’aucune rotation n’est possible sur un Tetriminos lorsque vous l’agence-
rez par rapport aux autres.

Ces Tetriminos sont donc parfaitement équivalents à tous points de vue :

##.. .##. ..##
#... .#.. ..#. ##.. .##. ..##
#... .#.. ..#. #... .#.. ..#.
.... #... .#.. ..#.

Ces 5 Tetriminos sont, quand à eux, 5 Tetriminos parfaitement distincts à tous
points de vue :

##.. .###
#... ...# ...###.
#...# #... .##.
....## ###.

Pour terminer, voici un exemple de fichier de description valide que votre programme
doit accepter de résoudre,

$> cat -e valid_sample.fillit
...#$
...#$
...#$
...#$
$
....$
....$
....$
####$
$
.###$
...#$
....$
....$
$
....$
..##$
.##.$
....$
$>

7

Fillit Can you feel it ?

Ainsi qu’un exemple de fichier de description invalide que votre programme doit reje-
ter pour plusieurs raisons :

$> cat -e invalid_sample.fillit
...#$
...#$
...#$
...#$
....$
....$
....$
####$
$
$
.###$
...#$
....$
....$
$
....$
..##$
.##.$
....$
$
$>

8

Fillit Can you feel it ?

V.2 Le plus petit carré
Le but de ce projet est d’agencer les Tetriminos entre eux pour former le plus petit

carré possible, sachant que ce carré peut présenter des trous quand les pièces données ne
s’emboîtent pas parfaitement.

Chaque Tetriminos, bien que présenté sur une grille de 16 cases, n’est défini que
par ses cases pleines (ses ’#’). Les 12 ’.’ restants sont ignorés pour l’agencement des
Tetriminos entre eux.

Les Tetriminos sont placés dans l’ordre dans lequel ils apparaissent dans le fichier.
Parmi les différentes solutions possibles réalisant le plus petit carré, sera retenue la solu-
tion où chaque Tetriminos est disposé le plus en haut, puis le plus à gauche possible, au
moment de son placement.

Exemple :

Considèrons les deux Tetriminos suivants (les ’#’ sont remplacés par des chiffres
pour simplifier la lecture des resulats) :

1...
1...
1... ET ..22
1... ..22

Le plus petit carré formé par ces 2 pièces fait 4 cases de coté, mais il en existe plusieurs
versions que vous pouvez voir ci-dessous :

a) b) c) d) e) f)
122. 1.22 1... 1... 1... 1...
122. 1.22 122. 1.22 1... 1...
1... 1... 122. 1.22 122. 1.22
1... 1... 1... 1... 122. 1.22

g) h) i) j) k) l)
.122 .1.. .1.. 221. ..1. ..1.
.122 .122 .1.. 221. 221. ..1.
.1.. .122 .122 ..1. 221. 221.
.1.. .1.. .122 ..1. ..1. 221.

m) n) o) p) q) r)
22.1 .221 ...1 ...1 ...1 ...1
22.1 .221 22.1 .221 ...1 ...1
...1 ...1 22.1 .221 22.1 .221
...1 ...1 ...1 ...1 22.1 .221

D’après les règles du jeu, la bonne solution est donc a).

9

Fillit Can you feel it ?

V.3 La sortie du programme
Votre programme doit afficher le plus petit carré solution sur la sortie standard. Pour

pouvoir identifier chaque Tetriminos dans le carré solution, vous assignerez une lettre
majuscule (en commencant avec ’A’) à ce Tetriminos dans l’ordre où ils apparaissent
dans le fichier de description. Il n’y aura jamais plus de 26 Tetriminos dans un fichier
de description.

Si le fichier de description comporte au moins une erreur, votre programme doit affi-
cher error sur la sortie standard et quitter proprement.

Exemple :

$> cat sample.fillit | cat -e
....$
##..$
.#..$
.#..$
$
....$
####$
....$
....$
$
#...$
###.$
....$
....$
$
....$
##..$
.##.$
....$
$> ./fillit sample.fillit | cat -e
DDAA$
CDDA$
CCCA$
BBBB$
$>

Autre Exemple :

$> cat sample.fillit | cat -e
....$
....$
####$
....$
$
....$
...$
..##$
..##$
$> ./fillit sample.fillit | cat -e
error$
$>

10

Fillit Can you feel it ?

Dernier Exemple :

$> cat sample.fillit | cat -e
...#$
...#$
...#$
...#$
$
....$
....$
....$
####$
$
.###$
...#$
....$
....$
$
....$
..##$
.##.$
....$
$
....$
.##.$
.##.$
....$
$
....$
....$
##..$
.##.$
$
##..$
.#..$
.#..$
....$
$
....$
###.$
.#..$
....$
$> ./fillit sample.fillit | cat -e
ABBBB.$
ACCCEE$
AFFCEE$
A.FFGG$
HHHDDG$
.HDD.G$
$>

11

Chapitre VI

Rendu et peer-évaluation

Rendez-votre travail sur votre dépot GiT comme d’habitude. Seul le travail présent
sur votre dépot sera évalué.

Votre travail sera évalué par une moulinette (en plus de toute possible peer-évaluation
selon votre cursus). Cette moulinette aura un timeout arbitraire qui arrêtera l’exécution
de votre programme si celui-ci met trop de temps à trouver la solution d’un test. Ce test
sera alors compté comme faux, bien entendu.

12

	Préambule
	Introduction
	Objectifs
	Consignes générales
	Partie obligatoire
	L'entrée du programme
	Le plus petit carré
	La sortie du programme

	Rendu et peer-évaluation

