
get_next_line

Parce que lire une ligne sur un fd, c’est chiant

Staff pedago pedago@42.fr

Résumé: Ce projet a pour but de vous faire coder une fonction qui renvoit une ligne
terminée par un retour à la ligne lue depuis un descripteur de fichier.

pedago@42.fr

Table des matières
I Préambule 2

II Introduction 4

III Objectifs 5

IV Consignes générales 6

V Partie obligatoire 7

VI Partie bonus 9

VII Rendu et peer-évaluation 10

1

Chapitre I

Préambule

James Deen, de son vrai nom Bryan Matthew Sevilla, né le 7 février 1986, est un
acteur de films pornographiques américain. Egalement réalisateur, il entre très tôt dans
l’industrie pornographique en 2004, alors âgé de 18 ans.

James Deen naît à Los Angeles et grandit à Pasadena. De culture juive, il raconte : “Je
m’identifie avant tout à la culture du judaïsme. Je ne saurais l’expliquer, mais aussitôt
que j’apprends la judéité de quelqu’un, je me sens lié à lui”.

James confie avoir vu du porno pour la première fois à la maternelle, et que c’est dès
ce moment que l’idée d’en faire lui est venue. Devenu adolescent, c’est en écoutant Jenna
Jameson lors d’une émission de radio (Loveline que cette dernière animait) que le jeune
James demanda à la star du cinéma pour adulte comment devenir une star lui-même.
Celle-ci lui répondit simplement “en se masturbant devant vingt de ses meilleurs amis”.
Écoutant ces conseils, le jeune homme s’exécute et s’exhibe dans les soirées lycéennes.
Il prend alors le nom de James Deen, qui comme le célèbre homophone, s’affiche l’air
sombre en fumant une cigarette vétu de son blouson en cuir.

Fort de ces premières expériences, James décide alors de rencontrer toutes les jeunes
femmes ayant un lien dans l’industrie du porno qu’il lui est possible de contacter ; il est
présenté à Pamela Peaks, qui lui propose divers noms de scène, dont Clint Cullingus.
Deen, qui séduit beaucoup de producteurs de films X, devra cependant faire ses preuves
étant donné son très jeune âge - 18 ans - et son inexpérience à l’écran. En une seule année
de carrière, James tourna dans 600 films, ce qui est un record.

En 2010, Deen est apparu dans près de 1000 films pornographiques et attribue son
succès à son apparence différente des autres acteurs bodybuildés, bardés de tatouages et
exhibant leur sexe surdimensionnés.

James Deen est à l’affiche en 2013 de The Canyons de Paul Schrader. Il n’a pas vu de
différence majeure entre la manière dont il a tourné à Hollywood et le cinéma porno, “le
sexe en moins”.

2

get_next_line Parce que lire une ligne sur un fd, c’est chiant

Figure I.1 – James Deen

3

Chapitre II

Introduction

Vous commencez maintenant à vous rendre compte qu’à chaque fois que vous retrou-
vez dans la situation de lire des données depuis un file descriptor et que cette donnée
n’est pas d’une taille connue à l’avance, c’est compliqué. Quelle taille de buffer choisir ?
Combien de fois lire sur le file descriptor pour retrouver la donnée ?

Il est parfaitement naturel et commun en programmation de vouloir lire une “ligne”
terminée par un retour à la ligne depuis un file descriptor. Par exemple chaque commande
que vous tapez dans votre shell ou bien chaque ligne lue depuis un fichier plat.

Grâce au projet get_next_line, vous allez pouvoir écrire une bonne fois pour toute
une fonction vous permettant de lire une ligne terminée par une retour à la ligne depuis
un file descriptor, l’ajouter à votre libft si le coeur vous en dit, et surtout l’utiliser dans
tous vos projets suivants qui en auront besoin.

4

Chapitre III

Objectifs

Ce projet va non seulement vous permettre d’ajouter une fonction très pratique à
votre collection, mais vous permettra également d’aborder un nouvel élément surprenant
de la programmation en C : les variables statiques.

Vous experimenterez également plus profondément les allocations, qu’elles aient lieu
sur la pile ou sur le tas, la manipulation et le cycle de vie d’un buffer, et la complexité
inattendue qu’implique l’utilisation d’une ou plusieurs variables statiques.

Bien entendu, vous renforcerez également votre rigueur grâce au respect de la Norme,
mais aussi en découvrant que l’état initial d’un variable dans une fonction peut varier
d’un appel à l’autre de cette fonction...

5

Chapitre IV

Consignes générales

• Vous ne devez rendre que deux fichiers : get_next_line.c et get_next_line.h

• Si vous êtes malin et que vous utilisez votre libft, rendez également votre dossier
libft à la racine de votre rendu.

• Il ne doit y avoir aucune fonction main dans votre rendu.

• Ne rendez pas de Makefile.

• Votre projet doit être à la Norme.

• Vous devez gérer les erreurs de façon sensible. En aucun cas votre programme (ou
dans le cas présent, votre fonction) ne doit quitter de façon inattendue (Segmenta-
tion fault, bus error, double free, etc).

• Toute mémoire allouée sur le tas doit être libérée proprement quand nécessaire.

• Vous devez rendre, à la racine de votre dépôt de rendu, un fichier auteur contenant
votre login suivi d’un ’\n’ :
$>cat -e auteur
xlogin$
$>

• Si vous choisissez de rendre ce projet en utilisant votre bibliothèque libft, il vous
est formellement interdit d’y ajouter des fonctions spécifiques à votre rendu de
get_next_line pour contourner les limitations de la Norme. celà sera considéré
comme triche lors de la soutenance. Votre get_next_line doit tenir en 5 fonctions
de 25 lignes maximum. Le respect de cette consigne sera méticuleusement vérifié
en soutenance. Inutile de venir à la pédago demander si telle ou telle fonction est
acceptable car vous voulez l’ajouter à votre bibliothèque. Demandez-vous plutot si
votre fonction brise cette consigne ou non et servez-vous de cette chose disgracieuse
située au dessus de vos épaules. Si vous respectez cette règle vous êtes bien entendu
encouragés à étendre votre bibliothèque avec des fonctions génériques dont vous
aurez découvert l’utilité au cours de ce projet.

• Les fonctions de la libc autorisées sur ce projet sont read, malloc et free.

6

Chapitre V

Partie obligatoire

• Ecrivez une fonction qui retourne une ligne lue depuis un file descriptor.

• On appelle “ligne” une suite de caractères terminée par un ’\n’ (code ascii 0x0a)
ou bien par End Of File (EOF).

https://latedev.wordpress.com/2012/12/04/all-about-eof/ : cet
article peut se montrer pertinent pour qui sait lire.

• Votre fonction aura le prototype suivant :

int get_next_line(const int fd, char **line);

• Le premier paramètre est le file descriptor depuis lequel lire.

• Le second paramètre est l’adresse d’un pointeur sur caractère qui servira à stocker
la ligne lue sur le file descriptor.

• la valeur de retour peut être 1, 0 ou -1 selon qu’une ligne a été lue, que la lecture
est terminée ou bien qu’une erreur est survenue respectivement.

• Votre fonction get_next_line doit renvoyer son resultat sans le ’\n’.

• Un appel en boucle à votre fonction get_next_line permettra donc de lire le texte
disponible sur un descripteur de fichier une ligne à la fois jusqu’à la fin du texte,
quelque soit la taille du texte en question ou d’une de ses lignes.

• Assurez-vous que votre fonction se comporte bien lorsqu’elle lit depuis un fichier,
depuis l’entrée standard, depuis une redirection, etc.

• Votre fichier get_next_line.h doit au moins contenir le prototype de la fonction
get_next_line et une macro permettant de choisir la taille du buffer de lecture de
read. Cette valeur sera modifiée en soutenance pour évaluer la robustesse de votre
rendu. Cette macro devra impérativement s’appeler BUFF_SIZE. Par exemple :
#define BUFF_SIZE 32

7

https://latedev.wordpress.com/2012/12/04/all-about-eof/

get_next_line Parce que lire une ligne sur un fd, c’est chiant

Est ce que votre code fonctionne toujours si BUFF_SIZE vaut 9999 ? Et
si BUFF_SIZE vaut 1 ? Et 10000000 ? Savez-vous pourquoi ?

• On considère que get_next_line a un comportement indeterminé si entre deux
appels, un même descripteur de fichier désigne deux fichiers différents alors que la
lecture du premier fichier n’était pas terminée.

• On considère également qu’un appel à la fonction lseek(2) n’aura jamais lieu entre
deux appels à get_next_line sur un même descripteur de fichier.

• On considère enfin que get_next_line a un comportement indeterminé en cas de
lecture dans un fichier binaire. Cependant, si vous le souhaitez, vous pouvez rendre
ce comportement cohérent.

• Les variables globales sont interdites.

• Les variables statiques sont autorisées.

Savoir ce qu’est une variable statique est un bon début : https:
//en.wikipedia.org/wiki/Static_variable

8

https://en.wikipedia.org/wiki/Static_variable
https://en.wikipedia.org/wiki/Static_variable

Chapitre VI

Partie bonus

Le projet get_next_line est simple et laisse peu de latitudes pour ajouter des bonus,
mais je suis certain que vous avez beaucoup d’imagination. Si vous avez réussi entièrement
et parfaitement la partie obligatoire, cette section propose quelques pistes pour aller plus
loin. Je repète, aucun bonus ne sera comptabilisé si la partie obligatoire n’est pas parfaite.

• Réussir get_next_line avec une seule variable statique.

• Pouvoir gérer plusieurs descripteurs de fichiers avec votre get_next_line. Par
exemple, si les descripteurs de fichier 3, 4 et 5 sont accessibles en lecture, alors
on peut appeler get_next_line une fois sur 3, une fois sur 4, à nouveau une fois
sur 3, puis une fois sur 5, etc, sans perdre le fil de la lecture sur chacun des descrip-
teurs.

9

Chapitre VII

Rendu et peer-évaluation

Rendez-votre travail sur votre dépot GiT comme d’habitude. Seul le travail présent
sur votre dépot sera évalué en soutenance et par la moulinette.

Une moulinette passera sur votre dépôt une fois vos soutenances effectuées. Elle com-
pilera de cette manière :
$> make -C libft/ fclean && make -C libft/

Puis :
$> clang -Wall -Wextra -Werror -I libft/includes -o get_next_line.o -c get_next_line.c
$> clang -Wall -Wextra -Werror -I libft/includes -o main.o -c main.c
$> clang -o test_gnl main.o get_next_line.o -I libft/includes -L libft/ -lft

Veillez à ce que votre dépôt compile bien de la même manière (le main est bien en-
tendu le notre).

Bon courage à tous !

10

	Préambule
	Introduction
	Objectifs
	Consignes générales
	Partie obligatoire
	Partie bonus
	Rendu et peer-évaluation

