
Libft
Ta propre bibliothèque à toi tout seul

pedago pedago@staff.42.fr

Résumé: Ce projet a pour but de vous faire coder en C une bibliothèque de fonctions
usuelles que vous pourrez utiliser dans tous vos projets.

pedago@staff.42.fr

Table des matières
I Préambule 2

II Introduction 3

III Objectifs 4

IV Consignes générales 5

V Partie obligatoire 7
V.1 Considérations techniques . 7
V.2 Part 1 - Fonctions de la libc . 8
V.3 Part 2 - Fonctions supplémentaires . 9

VI Partie bonus 15

VII Rendu et peer-évaluation 18

1

Chapitre I

Préambule

Ce premier projet marque le début de votre formation de développeur. profitez-en
pour lire cet article et apprenez aujourd’hui que le typage est ce qui différencie le déve-
loppeur de la bête. Si vous ne comprenez pas tout ce n’est pas grave. Ca viendra avec le
temps.

Pour vous accompagner musicalement tout au long de la réalisation de ce projet je
vous propose une liste de groupes dignes d’intérêt. Si vous n’aimez pas, c’est que vous
avez visiblement des goûts musicaux pauvres, mais vous avez probablement d’autres qua-
lités comme avoir beaucoup d’amis sur Facebook ou bien pouvoir toucher votre coude
avec votre langue. Bref. Les groupes sont listés sans ordre particulier et cette liste n’a pas
pour but d’être exhaustive. Les liens proposés sont donnés à titre d’exemple et vous êtes
encouragés à explorer vous-même leur riche discographie.

• Between The Buried And Me

• Between The Buried And Me, c’est bon, mangez-en

• Tesseract

• Chimp Spanner

• Emancipator

• Cynic

• Kalisia

• O.S.I

• Dream Theater

• Pain Of Salvation

• Crucified Barbara

2

http://fr.openclassrooms.com/informatique/cours/le-typage-presentation-thematique-et-historique
https://www.youtube.com/watch?v=yqoLZpCexCk
https://www.youtube.com/watch?v=y3J-I7EWieg
https://www.youtube.com/watch?v=O-hnSlicxV4
http://www.youtube.com/watch?v=YecYHXhBE70
http://www.youtube.com/watch?v=S4g7mPUskW8
http://www.youtube.com/watch?v=xcF6r4QVSXM
http://www.youtube.com/watch?v=x0f_N6nTpmA
http://www.youtube.com/watch?v=PNPrUyKltL0
http://www.youtube.com/watch?v=d6Y799Z7z-o
http://www.youtube.com/watch?v=WO-lbBZbX24
http://www.youtube.com/watch?v=ig3L27s0BZg

Chapitre II

Introduction

Le projet libft reprend le concept du D06 de la piscine, à savoir vous faire écrire une
bibliothèque de fonctions utiles que vous pourrez ensuite utiliser dans la vaste majorité
de vos projets de C cette année et ainsi vous faire gagner beaucoup de temps. Ce projet
vous demande d’écrire beaucoup de code que vous avez déja réalisé pendant la piscine,
ce qui en fait un excellent moment pour faire le point sur votre avancement.

Figure II.1 – Représentation de votre Libft (vision d’artiste)

3

Chapitre III

Objectifs

La programmation en C est une activité très laborieuse dès lors qu’on a pas accès à
toutes ces petites fonctions usuelles très pratiques. C’est pourquoi nous vous proposons
à travers ce projet de prendre le temps de réécrire ces fonctions, de les comprendre et
de vous les approprier. Vous pourrez alors réutiliser votre bibliothèque pour travailler
efficacement sur vos projets en C suivants.

Ce projet est également pour vous l’occasion d’étendre la liste des fonctions demandées
avec les vôtres et ainsi de rendre votre bibliothèque encore plus utile. N’hésitez pas à
compléter votre libft tout au long de votre scolarité une fois que ce projet ne sera plus
qu’un souvenir pour vous.

4

Chapitre IV

Consignes générales

• Les fonctions sont à réaliser dans l’ordre que vous souhaitez et vous êtes très en-
couragés à utiliser les fonctions déja codées pour réaliser les suivantes. La difficulté
n’est pas croissante et l’ordre du sujet parfaitement arbitraire. C’est un peu comme
dans un jeu vidéo où vous pouvez réaliser des quêtes dans l’ordre que vous voulez
et utiliser le loot des précédentes pour vous faciliter les suivantes.

• Votre projet doit être à la Norme

• En aucun cas vos fonctions ne doivent quitter de façon inattendue (Segmentation
fault, bus error, double free, etc) en dehors des comportements indéterminés. Votre
projet serait alors considéré comme non fonctionnel et recevra la note de 0 en
soutenance.

• Toute mémoire allouée sur le tas doit être libérée proprement quand nécéssaire.

• Vous devez rendre, à la racine de votre dépôt de rendu, un fichier auteur contenant
votre login suivi d’un ’\n’ :
$>cat -e auteur
xlogin$

• Vous devez rendre un fichier C par fonction à réaliser ainsi qu’un fichier libft.h
qui contiendra tous leurs prototypes ainsi que les macros et les typedefs dont
vous pourriez avoir besoin. Tous ces fichiers devront se trouver à la racine de votre
dépot.

• Votre dossier ne devra comprendre qu’un seul .h qui sera libft.h.

• Vous devez rendre un Makefile qui compilera vos sources vers une bibliothèque
statique nommée libft.a.

• Votre Makefile doit au moins proposer les règles $(NAME), all, clean, fclean et
re dans l’ordre qui vous paraîtra le plus adapté.

• Votre Makefile doit compiler votre travail avec les flags de compilation -Wall,
-Wextra et -Werror.

5

Libft Ta propre bibliothèque à toi tout seul

• Seules les fonctions suivantes de la libc sont autorisées : malloc(3), free(3) et
write(2) et leur utilisation est restreinte, voir plus bas.

• Vous devez bien entendu inclure l’include système nécessaire pour utiliser l’une
ou l’autre des 3 fonctions autorisées dans votre fichier .c concerné. Le seul include
système que vous êtes autorisés à utiliser en plus est string.h pour avoir accès à
la constante NULL et au type size_t. Tout le reste est interdit.

• Nous vous encourageons à réaliser un ou plusieurs programmes de test pour votre
bibliothèque. Bien que ce travail ne soit pas à rendre sur votre dépot et ne
sera pas évalué, il vous permettra de tester facilement votre travail et celui des
autres.
Hormis dans le cadre de la piscine à distance qui n’en contient pas, vous trouverez
une utilité particulière pour ces tests lors des soutenances. Vous êtes dans ce cadre
là libres d’utiliser vos tests ou ceux du souteneur/soutenu voire même les deux si
cela vous fait plaisir et la logistique sous-jacente est à votre discrétion.

6

Chapitre V

Partie obligatoire

V.1 Considérations techniques
• Votre fichier libft.h peut contenir des macros et des typedefs selon vos besoins.

• Une chaine de caractères est TOUJOURS terminée par un ’\0’, même si cela
a été omis dans la description d’une fonction. Dans le cas contraire, cela serait
explicitement indiqué.

• Interdiction d’utiliser des variables globales.

• Si vous avez besoin de fonctions auxiliaires pour l’écriture d’une fonction complexe,
vous devez définir ces fonctions auxiliaires en static dans le respect de la Norme.

Savoir ce qu’est une fonction statique est un bon début : http:
//codingfreak.blogspot.com/2010/06/static-functions-in-c.html

• Vous devez prêter attention à vos types et utiliser judicieusement les casts quand
c’est nécéssaire, en particulier lorsqu’un type void * est impliqué. Dans l’absolu,
évitez les casts implicites, quels que soient les types concernés. Exemple :

char *str;

str = malloc(42 * sizeof(*str)); /* Wrong ! Malloc retourne un void * (cast implicite) */
str = (char *) malloc(42 * sizeof(*str)); /* Right ! (cast explicite) */

7

http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html
http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html

Libft Ta propre bibliothèque à toi tout seul

V.2 Part 1 - Fonctions de la libc
Dans cette première partie, vous devez recoder un ensemble de fonctions de la libc

telles que décrites dans leur man respectif sur votre système. Vos fonctions devront avoir
exactement le même prototype et le même comportement que les originales. Leur nom
devra être préfixé par “ft_”. Par exemple strlen devient ft_strlen.

Certains prototypes des fonctions que vous devez recoder utilisent
le qualifieur de type "restrict". Ce mot clef fait parti du standard
c99, vous devez donc ne pas le mettre dans vos prototypes et ne pas
compiler avec le flag -std=c99.

Vous devez recoder les fonctions suivantes :

• memset
• bzero
• memcpy
• memccpy
• memmove
• memchr
• memcmp
• strlen
• strdup
• strcpy
• strncpy
• strcat
• strncat
• strlcat
• strchr
• strrchr
• strstr
• strnstr
• strcmp
• strncmp
• atoi
• isalpha
• isdigit
• isalnum
• isascii
• isprint
• toupper
• tolower

8

Libft Ta propre bibliothèque à toi tout seul

V.3 Part 2 - Fonctions supplémentaires
Dans cette seconde partie, vous devrez coder un certain nombre de fonctions absentes

de la libc ou présentes dans une forme différente. Certaines de ces fonctions peuvent
avoir de l’intéret pour faciliter l’écriture des fonctions de la première partie.

•

ft_memalloc
Prototype void * ft_memalloc(size_t size);
Description Alloue (avec malloc(3)) et retourne une zone de mémoire

“fraiche”. La mémoire allouée est initialisée à 0. Si l’allocation
échoue, la fonction renvoie NULL.

Param. #1 La taille de la zone de mémoire à allouer.
Retour La zone de mémoire allouée.
Fonctions libc malloc(3)

•

ft_memdel
Prototype void ft_memdel(void **ap);
Description Prend en paramètre l’adresse d’un pointeur dont la zone poin-

tée doit être libérée avec free(3), puis le pointeur est mis à
NULL.

Param. #1 L’adresse d’un pointeur dont il faut libérer la mémoire puis le
mettre à NULL.

Retour Rien.
Fonctions libc free(3).

•

ft_strnew
Prototype char * ft_strnew(size_t size);
Description Alloue (avec malloc(3)) et retourne une chaine de caractère

“fraiche” terminée par un ’\0’. Chaque caractère de la chaine
est initialisé à ’\0’. Si l’allocation echoue, la fonction renvoie
NULL.

Param. #1 La taille de la chaine de caractères à allouer.
Retour La chaine de caractères allouée et initialisée à 0.
Fonctions libc malloc(3)

•

ft_strdel
Prototype void ft_strdel(char **as);
Description Prend en paramètre l’adresse d’une chaine de caractères qui

doit être libérée avec free(3) et son pointeur mis à NULL.
Param. #1 L’adresse de la chaine de caractère dont il faut libérer la mé-

moire et mettre le pointeur à NULL.
Retour Rien.
Fonctions libc Free(3).

9

Libft Ta propre bibliothèque à toi tout seul

•

ft_strclr
Prototype void ft_strclr(char *s);
Description Assigne la valeur ’\0’ à tous les caractères de la chaine passée

en paramètre.
Param. #1 La chaine de caractères à clearer.
Retour Rien.
Fonctions libc Aucune.

•

ft_striter
Prototype void ft_striter(char *s, void (*f)(char *));
Description Applique la fonction f à chaque caractère de la chaine de

caractères passée en paramètre. Chaque caractère est passé
par adresse à la fonction f afin de pouvoir être modifié si
nécéssaire.

Param. #1 La chaine de caractères sur laquelle itérer.
Param. #2 La fonction à appeler sur chaque caractère de s.
Retour Rien.
Fonctions libc Aucune.

•

ft_striteri
Prototype void ft_striteri(char *s, void (*f)(unsigned int,

char *));
Description Applique la fonction f à chaque caractère de la chaine de

caractères passée en paramètre en précisant son index en pre-
mier argument. Chaque caractère est passé par adresse à la
fonction f afin de pouvoir être modifié si nécéssaire.

Param. #1 La chaine de caractères sur laquelle itérer.
Param. #2 La fonction à appeler sur chaque caractère de s et son index.
Retour Rien.
Fonctions libc Aucune.

•

ft_strmap
Prototype char * ft_strmap(char const *s, char (*f)(char));
Description Applique la fonction f à chaque caractère de la chaine de ca-

ractères passée en paramètre pour créer une nouvelle chaine
“fraiche” (avec malloc(3)) résultant des applications succes-
sives de f.

Param. #1 La chaine de caractères sur laquelle itérer.
Param. #2 La fonction à appeler sur chaque caractère de s.
Retour La chaine “fraiche” résultant des applications successives de

f.
Fonctions libc malloc(3)

10

Libft Ta propre bibliothèque à toi tout seul

•

ft_strmapi
Prototype char * ft_strmapi(char const *s, char

(*f)(unsigned int, char));
Description Applique la fonction f à chaque caractère de la chaine de

caractères passée en paramètre en précisant son index pour
créer une nouvelle chaine “fraiche” (avec malloc(3)) résultant
des applications successives de f.

Param. #1 La chaine de caractères sur laquelle itérer.
Param. #2 La fonction à appeler sur chaque caractère de s en précisant

son index.
Retour La chaine “fraiche” résultant des applications successives de

f.
Fonctions libc malloc(3)

•

ft_strequ
Prototype int ft_strequ(char const *s1, char const *s2);
Description Compare lexicographiquement s1 et s2. Si les deux chaines

sont égales, la fonction retourne 1, ou 0 sinon.
Param. #1 La première des deux chaines à comparer.
Param. #2 La seconde des deux chaines à comparer.
Retour 1 ou 0 selon que les deux chaines sont égales ou non.
Fonctions libc Aucune.

•

ft_strnequ
Prototype int ft_strnequ(char const *s1, char const *s2,

size_t n);
Description Compare lexicographiquement s1 et s2 jusqu’à n caractères

maximum ou bien qu’un ’\0’ ait été rencontré. Si les deux
chaines sont égales, la fonction retourne 1, ou 0 sinon.

Param. #1 La première des deux chaines à comparer.
Param. #2 La seconde des deux chaines à comparer.
Param. #3 Le nombre de caractères à comparer au maximum.
Retour 1 ou 0 selon que les deux chaines sont égales ou non.
Fonctions libc Aucune.

11

Libft Ta propre bibliothèque à toi tout seul

•

ft_strsub
Prototype char * ft_strsub(char const *s, unsigned int

start, size_t len);
Description Alloue (avec malloc(3)) et retourne la copie “fraiche” d’un

tronçon de la chaine de caractères passée en paramètre. Le
tronçon commence à l’index start et à pour longueur len. Si
start et len ne désignent pas un tronçon de chaine valide,
le comportement est indéterminé. Si l’allocation échoue, la
fonction renvoie NULL.

Param. #1 La chaine de caractères dans laquelle chercher le tronçon à
copier.

Param. #2 L’index dans la chaine de caractères où débute le tronçon à
copier.

Param. #3 La longueur du tronçon à copier.
Retour Le tronçon.
Fonctions libc malloc(3)

•

ft_strjoin
Prototype char * ft_strjoin(char const *s1, char const

*s2);
Description Alloue (avec malloc(3)) et retourne une chaine de caractères

“fraiche” terminée par un ’\0’ résultant de la concaténation
de s1 et s2. Si l’allocation echoue, la fonction renvoie NULL.

Param. #1 La chaine de caractères préfixe.
Param. #2 La chaine de caractères suffixe.
Retour La chaine de caractère “fraiche” résultant de la concaténation

des deux chaines.
Fonctions libc malloc(3)

•

ft_strtrim
Prototype char * ft_strtrim(char const *s);
Description Alloue (avec malloc(3)) et retourne une copie de la chaine

passée en paramètre sans les espaces blancs au debut et à la
fin de cette chaine. On considère comme espaces blancs les
caractères ’ ’, ’\n’ et ’\t’. Si s ne contient pas d’espaces
blancs au début ou à la fin, la fonction renvoie une copie de
s. Si l’allocation echoue, la fonction renvoie NULL.

Param. #1 La chaine de caractères à trimmer.
Retour La chaine de caractère “fraiche” trimmée ou bien une copie

de s sinon.
Fonctions libc malloc(3)

12

Libft Ta propre bibliothèque à toi tout seul

•

ft_strsplit
Prototype char ** ft_strsplit(char const *s, char c);
Description Alloue (avec malloc(3)) et retourne un tableau de chaines de

caractères “fraiches” (toutes terminées par un ’\0’, le tableau
également donc) résultant de la découpe de s selon le caractère
c. Si l’allocation echoue, la fonction retourne NULL. Exemple :
ft_strsplit("*salut*les***etudiants*", ’*’) renvoie
le tableau ["salut", "les", "etudiants"].

Param. #1 La chaine de caractères à découper.
Param. #2 Le caractère selon lequel découper la chaine.
Retour Le tableau de chaines de caractères “fraiches” résultant de la

découpe.
Fonctions libc malloc(3), free(3)

•

ft_itoa
Prototype char * ft_itoa(int n);
Description Alloue (avec malloc(3)) et retourne une chaine de caractères

“fraiche” terminée par un ’\0’ représentant l’entier n passé
en paramètre. Les nombres négatifs doivent être gérés. Si l’al-
location échoue, la fonction renvoie NULL.

Param. #1 L’entier à convertir en une chaine de caractères.
Retour La chaine de caractères représentant l’entier passé en para-

mètre.
Fonctions libc malloc(3)

•

ft_putchar
Prototype void ft_putchar(char c);
Description Affiche le caractère c sur la sortie standard.
Param. #1 Le caractères à afficher.
Retour Rien.
Fonctions libc write(2).

•

ft_putstr
Prototype void ft_putstr(char const *s);
Description Affiche la chaine s sur la sortie standard.
Param. #1 La chaine de caractères à afficher.
Retour Rien.
Fonctions libc write(2).

13

Libft Ta propre bibliothèque à toi tout seul

•

ft_putendl
Prototype void ft_putendl(char const *s);
Description Affiche la chaine s sur la sortie standard suivi d’un ’\n’.
Param. #1 La chaine de caractères à afficher.
Retour Rien.
Fonctions libc write(2).

•

ft_putnbr
Prototype void ft_putnbr(int n);
Description Affiche l’entier n sur la sortie standard.
Param. #1 L’entier à afficher.
Retour Rien.
Fonctions libc write(2).

•

ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Description Ecrit le caractère c sur le descripteur de fichier fd.
Param. #1 Le caractères à écrire.
Retour Rien.
Fonctions libc write(2).

•

ft_putstr_fd
Prototype void ft_putstr_fd(char const *s, int fd);
Description Ecrit la chaine s sur le descripteur de fichier fd.
Param. #1 La chaine de caractères à écrire.
Retour Rien.
Fonctions libc write(2).

•

ft_putendl_fd
Prototype void ft_putendl_fd(char const *s, int fd);
Description Ecrit la chaine s sur le descripteur de fichier fd suivi d’un

’\n’.
Param. #1 La chaine de caractères à écrire.
Retour Rien.
Fonctions libc write(2).

•

ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Description Ecrit l’entier n sur le descripteur de fichier fd.
Param. #1 L’entier à écrire.
Retour Rien.
Fonctions libc write(2).

14

Chapitre VI

Partie bonus

Si vous avez réussi parfaitement la partie obligatoire, cette section propose quelques
pistes pour aller plus loin. Un peu comme quand vous achetez un DLC pour un jeu vidéo.

Avoir des fonctions de manipulation de mémoire brute et de chaines de caractères est
très pratique, mais vous vous rendrez vite compte qu’avoir des fonctions de manipulation
de liste est encore plus pratique.

Vous utiliserez la structure suivante pour représenter les maillons de votre liste. Cette
structure est à ajouter à votre fichier libft.h.

typedef struct s_list
{

void *content;
size_t content_size;
struct s_list *next;

} t_list;

La description des champs de la structure t_list est la suivante :

• content : La donnée contenue dans le maillon. Le void * permet de stocker une
donnée de n’importe quel type.

• content_size : La taille de la donnée stockée. Le type void * ne permettant pas
de connaitre la taille de la donnée pointée, il est nécessaire d’en sauvegarder la
taille. Par exemple la chaine de caractères "42" a une taille de 3 octets et l’entier
32bits 42 a une taille de 4 octets.

• next : L’adresse du maillon suivant de la liste ou NULL si le maillon est le dernier.

15

Libft Ta propre bibliothèque à toi tout seul

Les fonctions suivantes vous permettront de manipuler vos listes aisément.

•

ft_lstnew
Prototype t_list * ft_lstnew(void const *content, size_t

content_size);
Description Alloue (avec malloc(3)) et retourne un maillon “frais”. Les

champs content et content_size du nouveau maillon sont
initialisés par copie des paramètres de la fonction. Si le pa-
ramètre content est nul, le champs content est initialisé à
NULL et le champs content_size est initialisé à 0 quelque
soit la valeur du paramètre content_size. Le champ next
est initialisé à NULL. Si l’allocation échoue, la fonction renvoie
NULL.

Param. #1 Le contenu à ajouter au nouveau maillon.
Param. #2 La taille du contenu à ajouter au nouveau maillon.
Retour Le nouveau maillon.
Fonctions libc malloc(3), free(3)

•

ft_lstdelone
Prototype void ft_lstdelone(t_list **alst, void (*del)(void

*, size_t));
Description Prend en paramètre l’adresse d’un pointeur sur un maillon et

libère la mémoire du contenu de ce maillon avec la fonction
del passée en paramètre puis libère la mémoire du maillon
en lui même avec free(3). La mémoire du champ next ne
doit en aucun cas être libérée. Pour terminer, le pointeur sur
le maillon maintenant libéré doit être mis à NULL (de manière
similaire à la fonction ft_memdel de la partie obligatoire).

Param. #1 L’adresse d’un pointeur sur le maillon à libérer.
Retour Rien.
Fonctions libc free(3)

•

ft_lstdel
Prototype void ft_lstdel(t_list **alst, void (*del)(void *,

size_t));
Description Prend en paramètre l’adresse d’un pointeur sur un maillon et

libère la mémoire de ce maillon et celle de tous ses succes-
seurs l’un après l’autre avec del et free(3). Pour terminer,
le pointeur sur le premier maillon maintenant libéré doit être
mis à NULL (de manière similaire à la fonction ft_memdel de
la partie obligatoire).

Param. #1 L’adresse d’un pointeur sur le premier maillon d’une liste à
libérer.

Retour Rien.
Fonctions libc free(3)

16

Libft Ta propre bibliothèque à toi tout seul

•

ft_lstadd
Prototype void ft_lstadd(t_list **alst, t_list *new);
Description Ajoute l’élément new en tête de la liste.
Param. #1 L’adresse d’un pointeur sur le premier maillon d’une liste.
Param. #2 Le maillon à ajouter en tête de cette liste.
Retour Rien.
Fonctions libc Aucune.

•

ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(t_list

*elem));
Description Parcourt la liste lst en appliquant à chaque maillon la fonc-

tion f.
Param. #1 Pointeur sur le premier maillon d’une liste.
Param. #2 L’adresse d’une fonction à laquelle appliquer chaque maillon

de la liste.
Retour Rien.
Fonctions libc Aucune.

•

ft_lstmap
Prototype t_list * ft_lstmap(t_list *lst, t_list *

(*f)(t_list *elem));
Description Parcourt la liste lst en appliquant à chaque maillon la fonc-

tion f et crée une nouvelle liste “fraiche” avec malloc(3) ré-
sultant des applications successives. Si une allocation échoue,
la fonction renvoie NULL.

Param. #1 Pointeur sur le premier maillon d’une liste.
Param. #2 L’adresse d’une fonction à appliquer à chaque maillon de la

liste pour crér une nouvelle liste.
Retour La nouvelle liste.
Fonctions libc malloc(3), free(3).

Si vous réussissez parfaitement la partie obligatoire et la partie bonus, vous êtes
encouragés à ajouter d’autres fonctions qui vous paraissent utiles pour agrandir votre
bibliothèque. Exemples : une version de ft_strsplit qui renvoie une liste de chaines au
lieu d’un tableau de chaines, la fonction ft_lstfold similaire à la fonction reduce de
Python et à la fonction List.fold_left d’OCaml (attention aux fuites mémoires !), des
fonctions de manipulation de tableaux, de piles, de files, de maps, de tables de hash, etc.
La limite est votre imagination.

17

Chapitre VII

Rendu et peer-évaluation

Rendez-votre travail sur votre dépôt GiT comme d’habitude. Seul le travail présent
sur votre dépot sera évalué.

Si et seulement si vous réalisez ce projet dans le cadre de la piscine à dis-
tance : Votre travail sera évalué par une moulinette uniquement.

Sinon : Une fois vos soutenances terminées une moulinette passera sur votre rendu.
Votre note finale sera calculée en prenant en compte les notes que vous avez reçues en
peer-évaluation et la note de la moulinette.

La moulinette corrigera tous vos exercices en suivant le schéma donné dans ce sujet
(part1, part2, bonus). Une erreur dans l’une des parties entraînera systématiquement
l’arrêt de la comptabilisation des points des parties suivantes.

Bon courage à tous et n’oubliez pas votre fichier auteur !

18

	Préambule
	Introduction
	Objectifs
	Consignes générales
	Partie obligatoire
	Considérations techniques
	Part 1 - Fonctions de la libc
	Part 2 - Fonctions supplémentaires

	Partie bonus
	Rendu et peer-évaluation

