Libft
Ta propre bibliotheque a toi tout seul

pedago pedago@staff.42.fr

Résumé: Ce projet a pour but de vous faire coder en C une bibliothéque de fonctions
usuelles que vous pourrez utiliser dans tous vos projets.

pedago@staff.42.fr

Table des matiéres

II

I11

IV

V.1
V.2
V.3

VI

VII

Préambule
Introduction
Objectifs

Consignes générales

Partie obligatoire
Considérations techniques
Part 1 - Fonctions de la libc . . .
Part 2 - Fonctions supplémentaires

Partie bonus

Rendu et peer-évaluation

© 0 3

Chapitre 1

Préambule

Ce premier projet marque le début de votre formation de développeur. profitez-en
pour lire cet article et apprenez aujourd’hui que le typage est ce qui différencie le déve-
loppeur de la béte. Si vous ne comprenez pas tout ce n’est pas grave. Ca viendra avec le
temps.

Pour vous accompagner musicalement tout au long de la réalisation de ce projet je
vous propose une liste de groupes dignes d’intérét. Si vous n’aimez pas, c’est que vous
avez visiblement des gotits musicaux pauvres, mais vous avez probablement d’autres qua-
lités comme avoir beaucoup d’amis sur Facebook ou bien pouvoir toucher votre coude
avec votre langue. Bref. Les groupes sont listés sans ordre particulier et cette liste n’a pas
pour but d’étre exhaustive. Les liens proposés sont donnés a titre d’exemple et vous étes
encouragés a explorer vous-méme leur riche discographie.

e Between The Buried And Me

e Between The Buried And Me, c¢’est bon, mangez-en
e Tesseract

e Chimp Spanner

e Emancipator

e Cynic

e Kalisia

e OS.I

e Dream Theater

e Pain Of Salvation

e (Crucified Barbara

http://fr.openclassrooms.com/informatique/cours/le-typage-presentation-thematique-et-historique
https://www.youtube.com/watch?v=yqoLZpCexCk
https://www.youtube.com/watch?v=y3J-I7EWieg
https://www.youtube.com/watch?v=O-hnSlicxV4
http://www.youtube.com/watch?v=YecYHXhBE70
http://www.youtube.com/watch?v=S4g7mPUskW8
http://www.youtube.com/watch?v=xcF6r4QVSXM
http://www.youtube.com/watch?v=x0f_N6nTpmA
http://www.youtube.com/watch?v=PNPrUyKltL0
http://www.youtube.com/watch?v=d6Y799Z7z-o
http://www.youtube.com/watch?v=WO-lbBZbX24
http://www.youtube.com/watch?v=ig3L27s0BZg

Chapitre 11

Introduction

Le projet 1ibft reprend le concept du D06 de la piscine, a savoir vous faire écrire une
bibliotheque de fonctions utiles que vous pourrez ensuite utiliser dans la vaste majorité
de vos projets de C cette année et ainsi vous faire gagner beaucoup de temps. Ce projet
vous demande d’écrire beaucoup de code que vous avez déja réalisé pendant la piscine,
ce qui en fait un excellent moment pour faire le point sur votre avancement.

FIGURE II.1 — Représentation de votre Libft (vision d’artiste)

Chapitre 111
Objectifs

La programmation en C est une activité tres laborieuse des lors qu’on a pas acces a
toutes ces petites fonctions usuelles tres pratiques. C’est pourquoi nous vous proposons
a travers ce projet de prendre le temps de réécrire ces fonctions, de les comprendre et
de vous les approprier. Vous pourrez alors réutiliser votre bibliotheque pour travailler
efficacement sur vos projets en C suivants.

Ce projet est également pour vous 1'occasion d’étendre la liste des fonctions demandées
avec les votres et ainsi de rendre votre bibliotheque encore plus utile. N’hésitez pas a
compléter votre 1ibft tout au long de votre scolarité une fois que ce projet ne sera plus
qu’'un souvenir pour vous.

Chapitre IV

Consignes générales

e Les fonctions sont a réaliser dans 'ordre que vous souhaitez et vous étes tres en-
couragés a utiliser les fonctions déja codées pour réaliser les suivantes. La difficulté
n’est pas croissante et I’ordre du sujet parfaitement arbitraire. C’est un peu comme
dans un jeu vidéo ou vous pouvez réaliser des quétes dans 1’ordre que vous voulez
et utiliser le loot des précédentes pour vous faciliter les suivantes.

e Votre projet doit étre a la Norme

e En aucun cas vos fonctions ne doivent quitter de fagon inattendue (Segmentation
fault, bus error, double free, etc) en dehors des comportements indéterminés. Votre
projet serait alors considéré comme non fonctionnel et recevra la note de 0 en
soutenance.

e Toute mémoire allouée sur le tas doit étre libérée proprement quand nécéssaire.

e Vous devez rendre, a la racine de votre dépot de rendu, un fichier auteur contenant
votre login suivi d'un "\n’ :

$>cat -e auteur
xlogin$

e Vous devez rendre un fichier C par fonction a réaliser ainsi qu’'un fichier 1ibft.h
qui contiendra tous leurs prototypes ainsi que les macros et les typedefs dont
vous pourriez avoir besoin. Tous ces fichiers devront se trouver a la racine de votre
dépot.

e Votre dossier ne devra comprendre qu'un seul .h qui sera libft.h.

e Vous devez rendre un Makefile qui compilera vos sources vers une bibliotheque
statique nommée 1ibft.a.

e Votre Makefile doit au moins proposer les regles $ (NAME), all, clean, fclean et
re dans 'ordre qui vous paraitra le plus adapté.

e Votre Makefile doit compiler votre travail avec les flags de compilation -Wall,
-Wextra et -Werror.

Libft

Ta propre bibliotheque a toi tout seul

e Seules les fonctions suivantes de la 1ibc sont autorisées : malloc(3), free(3) et

write(2) et leur utilisation est restreinte, voir plus bas.

Vous devez bien entendu inclure I'include systéme nécessaire pour utiliser 'une
ou 'autre des 3 fonctions autorisées dans votre fichier . c concerné. Le seul include
systéme que vous étes autorisés a utiliser en plus est string.h pour avoir acces a
la constante NULL et au type size t. Tout le reste est interdit.

Nous vous encourageons a réaliser un ou plusieurs programmes de test pour votre
bibliotheque. Bien que ce travail ne soit pas a rendre sur votre dépot et ne
sera pas évalué, il vous permettra de tester facilement votre travail et celui des
autres.

Hormis dans le cadre de la piscine a distance qui n’en contient pas, vous trouverez
une utilité particuliere pour ces tests lors des soutenances. Vous étes dans ce cadre
la libres d’utiliser vos tests ou ceux du souteneur/soutenu voire méme les deux si
cela vous fait plaisir et la logistique sous-jacente est a votre discrétion.

Chapitre V

Partie obligatoire

V.1 Considérations techniques

e Votre fichier 1ibft.h peut contenir des macros et des typedefs selon vos besoins.

e Une chaine de caracteres est TOUJOURS terminée par un ’\0’, méme si cela
a été omis dans la description d’'une fonction. Dans le cas contraire, cela serait
explicitement indiqué.

e Interdiction d’utiliser des variables globales.

e Si vous avez besoin de fonctions auxiliaires pour ’écriture d'une fonction complexe,
vous devez définir ces fonctions auxiliaires en static dans le respect de la Norme.

Savoir ce qu’est une fonction statique est un bon début : http:

//codingfreak.blogspot.com/2010/06/static-functions-in-c.html

e Vous devez préter attention a vos types et utiliser judicieusement les casts quand
c’est nécéssaire, en particulier lorsqu'un type void * est impliqué. Dans 1’absolu,
évitez les casts implicites, quels que soient les types concernés. Exemple :

str;

malloc((*str));

str = () malloc((*+str));

http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html
http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html

Libft Ta propre bibliotheque a toi tout seul

V.2 Part 1 - Fonctions de la libc

Dans cette premiere partie, vous devez recoder un ensemble de fonctions de la libc
telles que décrites dans leur man respectif sur votre systeme. Vos fonctions devront avoir
exactement le méme prototype et le méme comportement que les originales. Leur nom
devra étre préfixé par “ft_". Par exemple strlen devient ft_strlen.

Certains prototypes des fonctions que vous devez recoder utilisent
le qualifieur de type "restrict". Ce mot clef fait parti du standard
EE; c99, vous devez donc ne pas le mettre dans vos prototypes et ne pas

compiler avec le flag -std=c99.

Vous devez recoder les fonctions suivantes :

e memset
® bzero

e memcpy
e memccpy
e memmove
e memchr
e memcmp
e strlen
e strdup
® strcpy
e strncpy
e strcat
e strncat
e strlcat
e strchr
e strrchr
® strstr
e strnstr
e strcmp
e strncmp
e atoi

e isalpha
e isdigit
e isalnum
e isascii
e isprint
e toupper

e tolower

Libft

Ta propre bibliotheque a toi tout seul

V.3 Part 2 - Fonctions supplémentaires

Dans cette seconde partie, vous devrez coder un certain nombre de fonctions absentes
de la libc ou présentes dans une forme différente. Certaines de ces fonctions peuvent
avoir de l'intéret pour faciliter I’écriture des fonctions de la premiére partie.

ft _ memalloc

Prototype void * ft memalloc(size t size);

Description Alloue (avec malloc(3)) et retourne une zone de mémoire
“fraiche”. La mémoire allouée est initialisée a 0. Si I'allocation
échoue, la fonction renvoie NULL.

Param. #1 La taille de la zone de mémoire a allouer.

Retour La zone de mémoire allouée.

Fonctions libc | malloc(3)

ft__memdel

Prototype void ft_memdel(void **ap);

Description Prend en parametre ’adresse d'un pointeur dont la zone poin-
tée doit étre libérée avec free(3), puis le pointeur est mis a
NULL.

Param. #1 L’adresse d'un pointeur dont il faut libérer la mémoire puis le
mettre a NULL.

Retour Rien.

Fonctions libc | free(3).

ft strnew

Prototype char * ft strnew(size_ t size);

Description Alloue (avec malloc(3)) et retourne une chaine de caractere
“fraiche” terminée par un >\0°’. Chaque caractere de la chaine
est initialisé a >\0’. Si I'allocation echoue, la fonction renvoie
NULL.

Param. #1 La taille de la chaine de caracteres a allouer.

Retour La chaine de caracteres allouée et initialisée a 0.

Fonctions libc

malloc(3)

ft_strdel
Prototype void ft_strdel(char **as);
Description Prend en parametre 'adresse d’une chaine de caracteres qui
doit étre libérée avec free(3) et son pointeur mis a NULL.
Param. #1 L’adresse de la chaine de caractere dont il faut libérer la mé-
moire et mettre le pointeur a NULL.
Retour Rien.
Fonctions libc | Free(3).

Libft

Ta propre bibliotheque a toi tout seul

ft strclr

Prototype void ft_strclr(char *s);

Description Assigne la valeur >\0’ a tous les caracteres de la chaine passée
en parametre.

Param. #1 La chaine de caractéres a clearer.

Retour Rien.

Fonctions libc | Aucune.

ft striter

Prototype void ft_striter(char *s, void (xf) (char *));

Description Applique la fonction f a chaque caractere de la chaine de
caracteres passée en parametre. Chaque caractére est passé
par adresse a la fonction f afin de pouvoir étre modifié si
nécéssaire.

Param. #1 La chaine de caracteres sur laquelle itérer.

Param. #2 La fonction a appeler sur chaque caractere de s.

Retour Rien.

Fonctions libc | Aucune.

ft_striteri

Prototype void ft_striteri(char *s, void (*f) (unsigned int,
char *));

Description Applique la fonction £ a chaque caractere de la chaine de
caractéres passée en parametre en précisant son index en pre-
mier argument. Chaque caractere est passé par adresse a la
fonction £ afin de pouvoir étre modifié si nécéssaire.

Param. #1 La chaine de caracteéres sur laquelle itérer.

Param. #2 La fonction a appeler sur chaque caractere de s et son index.

Retour Rien.

Fonctions libc | Aucune.

ft_ strmap

Prototype char * ft_strmap(char const *s, char (*f)(char));

Description Applique la fonction f a chaque caractere de la chaine de ca-
racteéres passée en parametre pour créer une nouvelle chaine
“fraiche” (avec malloc(3)) résultant des applications succes-
sives de f.

Param. #1 La chaine de caracteres sur laquelle itérer.

Param. #2 La fonction a appeler sur chaque caractere de s.

Retour La chaine “fraiche” résultant des applications successives de

f

Fonctions libc

malloc(3)

10

Libft Ta propre bibliotheque a toi tout seul
ft__strmapi

Prototype char * ft_strmapi(char const *s, char
(*f) (unsigned int, char));

Description Applique la fonction f a chaque caractere de la chaine de
caracteres passée en parametre en précisant son index pour
créer une nouvelle chaine “fraiche” (avec malloc(3)) résultant

° des applications successives de f.

Param. #1 La chaine de caracteres sur laquelle itérer.

Param. #2 La fonction a appeler sur chaque caractere de s en précisant
son index.

Retour La chaine “fraiche” résultant des applications successives de

f.

Fonctions libc | malloc(3)
ft_ strequ
Prototype int ft_strequ(char const *sl, char const *s2);
Description Compare lexicographiquement s1 et s2. Si les deux chaines
sont égales, la fonction retourne 1, ou 0 sinon.
Param. #1 La premiere des deux chaines a comparer.
Param. #2 La seconde des deux chaines a comparer.
Retour 1 ou 0 selon que les deux chaines sont égales ou non.

Fonctions libc

Aucune.

ft_ strnequ

Prototype int ft_strnequ(char const *sl, char const *s2,
size_t n);

Description Compare lexicographiquement s1 et s2 jusqu’a n caracteres
maximum ou bien quun ’\0’ ait été rencontré. Si les deux
chaines sont égales, la fonction retourne 1, ou 0 sinon.

Param. #1 La premiere des deux chaines a comparer.

Param. #2 La seconde des deux chaines a comparer.

Param. #3 Le nombre de caractéres a comparer au maximum.

Retour 1 ou 0 selon que les deux chaines sont égales ou non.

Fonctions libc

Aucune.

11

Libft Ta propre bibliotheque a toi tout seul
ft strsub

Prototype char * ft_strsub(char const *s, unsigned int
start, size_t len);

Description Alloue (avec malloc(3)) et retourne la copie “fraiche” d’un
trongon de la chaine de caracteres passée en parameéetre. Le
trongcon commence a 'index start et a pour longueur len. Si
start et len ne désignent pas un trongon de chaine valide,
le comportement est indéterminé. Si 'allocation échoue, la

* fonction renvoie NULL.

Param. #1 La chaine de caracteres dans laquelle chercher le trongon a
copier.

Param. #2 L’index dans la chaine de caracteres ou débute le troncon a
copier.

Param. #3 La longueur du troncon a copier.

Retour Le troncon.

Fonctions libc | malloc(3)

ft_ strjoin

Prototype char * ft_strjoin(char const *sl, char const
*S2) ;

Description Alloue (avec malloc(3)) et retourne une chaine de caracteres
“fraiche” terminée par un ’\0’ résultant de la concaténation

° de s1 et s2. Si l'allocation echoue, la fonction renvoie NULL.

Param. #1 La chaine de caracteres préfixe.

Param. #2 La chaine de caracteres suffixe.

Retour La chaine de caractere “fraiche” résultant de la concaténation
des deux chaines.

Fonctions libc | malloc(3)

ft strtrim

Prototype char * ft_strtrim(char const *s);

Description Alloue (avec malloc(3)) et retourne une copie de la chaine
passée en parametre sans les espaces blancs au debut et a la
fin de cette chaine. On considere comme espaces blancs les

. caracteres > 7, ’\n’ et ’\t’. Si s ne contient pas d’espaces
blancs au début ou a la fin, la fonction renvoie une copie de
s. Si ’allocation echoue, la fonction renvoie NULL.
Param. #1 La chaine de caracteres a trimmer.
Retour La chaine de caractere “fraiche” trimmée ou bien une copie

de s sinon.

Fonctions libc

malloc(3)

12

Libft

Ta propre bibliotheque a toi tout seul

ft_ strsplit

Prototype char *x ft_strsplit(char const *s, char c);

Description Alloue (avec malloc(3)) et retourne un tableau de chaines de
caracteres “fraiches” (toutes terminées par un >\0’, le tableau
également donc) résultant de la découpe de s selon le caractere
c. Si I'allocation echoue, la fonction retourne NULL. Exemple :
ft_strsplit("*salut*les***etudiants*", ’*’) renvoie
le tableau ["salut", "les", "etudiants"].

Param. #1 La chaine de caracteres a découper.

Param. #2 Le caractere selon lequel découper la chaine.

Retour Le tableau de chaines de caracteres “fraiches” résultant de la

découpe.

Fonctions libc

malloc(3), free(3)

ft itoa

Prototype char * ft_itoa(int n);

Description Alloue (avec malloc(3)) et retourne une chaine de caracteres
“fraiche” terminée par un ’\0’ représentant l’entier n passé
en parametre. Les nombres négatifs doivent étre gérés. Si I'al-
location échoue, la fonction renvoie NULL.

Param. #1 L’entier a convertir en une chaine de caracteéres.

Retour La chaine de caracteres représentant l'entier passé en para-

metre.

Fonctions libc

malloc(3)

ft_ putchar
Prototype void ft_putchar(char c);
Description Affiche le caractere ¢ sur la sortie standard.
Param. #1 Le caracteres a afficher.
Retour Rien.
Fonctions libc | write(2).

ft_ putstr
Prototype void ft_putstr(char const *s);
Description Affiche la chaine s sur la sortie standard.
Param. #1 La chaine de caracteres a afficher.
Retour Rien.
Fonctions libc | write(2).

13

Libft

Ta propre bibliotheque a toi tout seul

ft__putendl
Prototype void ft_putendl(char const *s);
Description Affiche la chaine s sur la sortie standard suivi d'un ’\n”’.
Param. #1 La chaine de caracteres a afficher.
Retour Rien.
Fonctions libc | write(2).
ft__putnbr
Prototype void ft_putnbr(int n);
Description Affiche 'entier n sur la sortie standard.
Param. #1 L’entier a afficher.
Retour Rien.
Fonctions libc | write(2).
ft_ putchar_ fd
Prototype void ft_putchar_fd(char c, int fd);
Description Ecrit le caractere c sur le descripteur de fichier fd.
Param. #1 Le caracteres a écrire.
Retour Rien.
Fonctions libc | write(2).
ft_ putstr_ fd
Prototype void ft_putstr_fd(char const *s, int fd);
Description Ecrit la chaine s sur le descripteur de fichier fd.
Param. #1 La chaine de caracteres a écrire.
Retour Rien.
Fonctions libc | write(2).
ft_ putendl_ fd
Prototype void ft_putendl fd(char const *s, int fd);
Description Ecrit la chaine s sur le descripteur de fichier fd suivi d’un
’\n’.
Param. #1 La chaine de caracteres a écrire.
Retour Rien.
Fonctions libc | write(2).
ft_ putnbr_ fd
Prototype void ft_putnbr_fd(int n, int fd);
Description Ecrit 'entier n sur le descripteur de fichier fd.
Param. #1 L’entier a écrire.
Retour Rien.
Fonctions libc | write(2).

14

Chapitre VI

Partie bonus

Si vous avez réussi parfaitement la partie obligatoire, cette section propose quelques
pistes pour aller plus loin. Un peu comme quand vous achetez un DLC pour un jeu vidéo.

Avoir des fonctions de manipulation de mémoire brute et de chaines de caracteres est
tres pratique, mais vous vous rendrez vite compte qu’avoir des fonctions de manipulation
de liste est encore plus pratique.

Vous utiliserez la structure suivante pour représenter les maillons de votre liste. Cette
structure est a ajouter a votre fichier 1ibft.h.

s_list

content;
content_size;

s_list next;
t_list;

La description des champs de la structure t_list est la suivante :

e content : La donnée contenue dans le maillon. Le void * permet de stocker une
donnée de n’importe quel type.

e content_size : La taille de la donnée stockée. Le type void * ne permettant pas
de connaitre la taille de la donnée pointée, il est nécessaire d’en sauvegarder la
taille. Par exemple la chaine de caracteres "42" a une taille de 3 octets et I'entier
32bits 42 a une taille de 4 octets.

e next : L’adresse du maillon suivant de la liste ou NULL si le maillon est le dernier.

15

Libft

Ta propre bibliotheque a toi tout seul

Les fonctions suivantes vous permettront de manipuler vos listes aisément.

ft lstnew

Prototype

t_list * ft_lstnew(void const *content, size t
content_size);

Description

Alloue (avec malloc(3)) et retourne un maillon “frais”. Les
champs content et content_size du nouveau maillon sont
initialisés par copie des parametres de la fonction. Si le pa-
rametre content est nul, le champs content est initialisé a
NULL et le champs content_size est initialisé a 0 quelque
soit la valeur du parameétre content size. Le champ next
est initialisé a NULL. Si I'allocation échoue, la fonction renvoie
NULL.

Param. #1

Le contenu a ajouter au nouveau maillon.

Param. #2

La taille du contenu a ajouter au nouveau maillon.

Retour

Le nouveau maillon.

Fonctions libc

malloc(3), free(3)

ft lstdelone

Prototype

void ft lstdelone(t list **alst, void (*del) (void
*, size t));

Description

Prend en parametre 'adresse d'un pointeur sur un maillon et
libére la mémoire du contenu de ce maillon avec la fonction
del passée en parametre puis libere la mémoire du maillon
en lui méme avec free(3). La mémoire du champ next ne
doit en aucun cas étre libérée. Pour terminer, le pointeur sur
le maillon maintenant libéré doit étre mis & NULL (de maniere
similaire & la fonction ft_memdel de la partie obligatoire).

Param. #1

L’adresse d’un pointeur sur le maillon a libérer.

Retour

Rien.

Fonctions libc

free(3)

ft_ 1stdel

Prototype

void ft_lstdel(t_list **alst, void (xdel) (void *,
size _t));

Description

Prend en parameétre ’adresse d’un pointeur sur un maillon et
libere la mémoire de ce maillon et celle de tous ses succes-
seurs I'un apres 'autre avec del et free(3). Pour terminer,
le pointeur sur le premier maillon maintenant libéré doit étre
mis & NULL (de maniere similaire a la fonction ft_memdel de
la partie obligatoire).

Param. #1

L’adresse d'un pointeur sur le premier maillon d'une liste a
libérer.

Retour

Rien.

Fonctions libc

free(3)

16

Libft

Ta propre bibliotheque a toi tout seul

ft lstadd

Prototype void ft_lstadd(t_list **alst, t_list *new);

Description Ajoute I’élément new en téte de la liste.

Param. #1 L’adresse d’un pointeur sur le premier maillon d'une liste.

Param. #2 Le maillon a ajouter en téte de cette liste.

Retour Rien.

Fonctions libc | Aucune.

ft_lstiter

Prototype void ft_lstiter(t_list *1lst, void (xf)(t_list
xelem)) ;

Description Parcourt la liste 1st en appliquant a chaque maillon la fonc-
tion f£.

Param. #1 Pointeur sur le premier maillon d’une liste.

Param. #2 L’adresse d'une fonction a laquelle appliquer chaque maillon
de la liste.

Retour Rien.

Fonctions libc | Aucune.

ft_ Istmap

Prototype t_list * ft_lstmap(t_list *1lst, t_list %
(xf) (t_list *elem));

Description Parcourt la liste 1st en appliquant a chaque maillon la fonc-
tion f et crée une nouvelle liste “fraiche” avec malloc(3) ré-
sultant des applications successives. Si une allocation échoue,
la fonction renvoie NULL.

Param. #1 Pointeur sur le premier maillon d’une liste.

Param. #2 L’adresse d’une fonction a appliquer a chaque maillon de la
liste pour crér une nouvelle liste.

Retour La nouvelle liste.

Fonctions libc

malloc(3), free(3).

Si vous réussissez parfaitement la partie obligatoire et la partie bonus, vous étes
encouragés a ajouter d’autres fonctions qui vous paraissent utiles pour agrandir votre
bibliotheque. Exemples : une version de ft_strsplit qui renvoie une liste de chaines au
lieu d’un tableau de chaines, la fonction ft_lstfold similaire a la fonction reduce de
Python et a la fonction List.fold_left d’OCaml (attention aux fuites mémoires!), des
fonctions de manipulation de tableaux, de piles, de files, de maps, de tables de hash, etc.
La limite est votre imagination.

17

Chapitre VII

Rendu et peer-évaluation

Rendez-votre travail sur votre dépot GiT comme d’habitude. Seul le travail présent
sur votre dépot sera évalué.

Si et seulement si vous réalisez ce projet dans le cadre de la piscine a dis-
tance : Votre travail sera évalué par une moulinette uniquement.

Sinon : Une fois vos soutenances terminées une moulinette passera sur votre rendu.
Votre note finale sera calculée en prenant en compte les notes que vous avez recues en
peer-évaluation et la note de la moulinette.

La moulinette corrigera tous vos exercices en suivant le schéma donné dans ce sujet
(partl, part2, bonus). Une erreur dans l'une des parties entrainera systématiquement

I’arrét de la comptabilisation des points des parties suivantes.

Bon courage a tous et n’oubliez pas votre fichier auteur !

18

	Préambule
	Introduction
	Objectifs
	Consignes générales
	Partie obligatoire
	Considérations techniques
	Part 1 - Fonctions de la libc
	Part 2 - Fonctions supplémentaires

	Partie bonus
	Rendu et peer-évaluation

