towards 0.10

This commit is contained in:
Jack Halford 2023-08-22 00:27:27 +02:00
parent 08d447115d
commit 77fd0ce4cf
No known key found for this signature in database
GPG key ID: A427D956E8E67679
9 changed files with 132 additions and 156 deletions

View file

@ -58,32 +58,32 @@ pub fn initialize() void {
x86.isr.install_exceptions();
x86.isr.install_irqs();
x86.isr.install_syscalls();
x86.interrupt.registerIRQ(0, kernel.time.increment);
x86.interrupt.registerIRQ(1, kernel.ps2.keyboard_handler);
x86.interrupt.register(1, debug_trap);
x86.interrupt.register(13, general_protection_fault);
x86.interrupt.register(14, page_fault);
// x86.interrupt.registerIRQ(0, kernel.time.increment);
// x86.interrupt.registerIRQ(1, kernel.ps2.keyboard_handler);
// x86.interrupt.register(1, debug_trap);
// x86.interrupt.register(13, general_protection_fault);
// x86.interrupt.register(14, page_fault);
// load IDT
x86.instr.lidt(@ptrToInt(&idtr));
}
fn general_protection_fault() void {
kernel.println("general protection fault", .{});
kernel.vga.println("general protection fault", .{});
x86.instr.hang();
}
fn debug_trap() void {
kernel.println("debug fault/trap", .{});
kernel.println("dr7: 0b{b}", .{x86.instr.dr7()});
kernel.vga.println("debug fault/trap", .{});
kernel.vga.println("dr7: 0b{b}", .{x86.instr.dr7()});
}
fn page_fault() void {
const vaddr = x86.instr.cr2();
kernel.println("cr2: 0x{x}", .{vaddr});
kernel.println("phy: 0x{x}", .{kernel.paging.translate(vaddr)});
kernel.println("pde: 0x{x} ({})", .{ kernel.paging.pde(vaddr), vaddr >> 22 });
kernel.println("pte: 0x{x} ({})", .{ kernel.paging.pte(vaddr), vaddr >> 12 });
kernel.vga.println("cr2: 0x{x}", .{vaddr});
kernel.vga.println("phy: 0x{x}", .{x86.paging.translate(vaddr)});
kernel.vga.println("pde: 0x{x} ({})", .{ x86.paging.pde(vaddr), vaddr >> 22 });
kernel.vga.println("pte: 0x{x} ({})", .{ x86.paging.pte(vaddr), vaddr >> 12 });
// paging.format();
x86.instr.hang();
}

View file

@ -31,7 +31,7 @@ const IRQ_15 = IRQ_0 + 15;
const SYSCALL = 128;
// Registered interrupt handlers. (see x86.isr.s)
var handlers = [_]fn () void{unhandled} ** 48;
const handlers = [_]fn () void{unhandled} ** 48;
// Registered IRQ subscribers. (see x86.isr.s)
// var irq_subscribers = []MailboxId{MailboxId.Kernel} ** 16;
@ -130,11 +130,11 @@ inline fn endOfInterrupt(irq: u8) void {
}
}
pub fn register(n: u8, handler: fn () void) void {
pub fn register(n: u8, comptime handler: fn () void) void {
handlers[n] = handler;
}
pub fn registerIRQ(irq: u8, handler: fn () void) void {
pub fn registerIRQ(irq: u8, comptime handler: fn () void) void {
register(IRQ_0 + irq, handler);
maskIRQ(irq, false); // Unmask the IRQ.
}

View file

@ -1,6 +1,6 @@
pub usingnamespace @import("../common.zig");
// pub usingnamespace @import("../common.zig");
pub const kernel = @import("../index.zig");
// pub const kernel = @import("../index.zig");
pub const x86 = @import("../arch/x86/index.zig");

View file

@ -1,11 +1,11 @@
pub const dq = @import("delta_queue.zig");
// pub usingnamespace @import("common.zig");
// pub usingnamespace @import("delta_queue.zig");
// pub usingnamespace @import("ring_buffer.zig");
pub const vga = @import("vga.zig");
//drivers
// pub const driver = @import("driver/index.zig");
pub const driver = @import("driver/index.zig");
//arch
pub const x86 = @import("arch/x86/index.zig");
@ -15,11 +15,11 @@ pub const constants = @import("constants.zig");
pub const layout = @import("layout.zig");
pub const multiboot = @import("multiboot.zig");
pub const vmem = @import("vmem.zig");
// pub const task = @import("task.zig");
pub const task = @import("task.zig");
pub const time = @import("time.zig");
//extra
// pub const console = @import("console.zig");
// pub const bio = @import("bio.zig");
// pub const pci = @import("pci/pci.zig");
// pub const ps2 = @import("ps2.zig");
pub const pci = @import("pci/pci.zig");
pub const ps2 = @import("ps2.zig");

View file

@ -1,6 +1,8 @@
pub usingnamespace @import("../index.zig");
pub const virtio = @import("virtio.zig");
pub const ide = @import("ide.zig");
pub const std = @import("std");
pub const kernel = @import("index.zig");
pub const x86 = @import("x86.zig");
pub const driver = @import("driver/index.zig");
const PCI_CONFIG_ADDRESS = 0xCF8;
const PCI_CONFIG_DATA = 0xCFC;
@ -41,10 +43,10 @@ pub const PciDevice = struct {
}
pub fn format(self: PciDevice) void {
print("{}:{}.{}", .{ self.bus, self.slot, self.function });
print(" {x},{x:2}", .{ self.class(), self.subclass() });
print(" 0x{x} 0x{x}", .{ self.vendor, self.device() });
println(" {}", .{if (self.driver()) |d| d.name else " (none)"});
kernel.vga.print("{}:{}.{}", .{ self.bus, self.slot, self.function });
kernel.vga.print(" {x},{x:2}", .{ self.class(), self.subclass() });
kernel.vga.print(" 0x{x} 0x{x}", .{ self.vendor, self.device() });
kernel.vga.println(" {}", .{if (self.driver()) |d| d.name else " (none)"});
}
pub fn driver(self: PciDevice) ?Driver {
@ -94,7 +96,7 @@ pub const PciDevice = struct {
return self.config_read(u8, 0x3c);
}
pub fn bar(self: PciDevice, comptime n: usize) u32 {
assert(n <= 5);
std.debug.assert(n <= 5);
return self.config_read(u32, 0x10 + 4 * n);
}
// only for header_type == 0
@ -102,7 +104,7 @@ pub const PciDevice = struct {
return self.config_read(u8, 0x2e);
}
pub inline fn config_write(self: PciDevice, value: var, comptime offset: u8) void {
pub inline fn config_write(self: PciDevice, value: anytype, comptime offset: u8) void {
// ask for access before writing config
x86.outl(PCI_CONFIG_ADDRESS, self.address(offset));
switch (@TypeOf(value)) {
@ -172,7 +174,7 @@ pub fn scan() void {
pub fn lspci() void {
var slot: u5 = 0;
println("b:s.f c, s vendor device driver", .{});
kernel.vga.println("b:s.f c, s vendor device driver", .{});
while (slot < 31) : (slot += 1) {
if (PciDevice.init(0, slot, 0)) |dev| {
var function: u3 = 0;

View file

@ -1,5 +1,5 @@
usingnamespace @import("index.zig");
// const x86 = @import("x86");
const x86 = @import("x86");
const PS2_DATA = 0x60;
const PS2_STATUS = 0x64;
@ -67,8 +67,8 @@ const KEYMAP_US = [_][]const u8{
fn ps2_scancode() u8 {
var scancode: u8 = 0;
while (true) if (x86.inb(PS2_DATA) != scancode) {
scancode = x86.inb(PS2_DATA);
while (true) if (x86.io.inb(PS2_DATA) != scancode) {
scancode = x86.io.inb(PS2_DATA);
if (scancode > 0) return scancode;
};
}

View file

@ -1,25 +1,27 @@
pub usingnamespace @import("index.zig");
const kernel = @import("kernel");
const std = @import("std");
const x86 = @import("x86");
var boot_task = Task{ .tid = 0, .esp = 0x47, .state = .Running, .born = true };
var tid_counter: u16 = 1;
pub const TaskNode = std.TailQueue(*Task).Node;
pub const SleepNode = DeltaQueue(*TaskNode).Node;
pub const SleepNode = kernel.dq.DeltaQueue(*TaskNode).Node;
pub var current_task: *TaskNode = &TaskNode.init(&boot_task);
pub var cleaner_task: *TaskNode = undefined;
pub var ready_tasks = std.TailQueue(*Task).init();
pub var blocked_tasks = std.TailQueue(*Task).init();
pub var terminated_tasks = std.TailQueue(*Task).init();
pub var sleeping_tasks = DeltaQueue(*TaskNode).init();
pub var sleeping_tasks = kernel.dq.DeltaQueue(*TaskNode).init();
const STACK_SIZE = x86.PAGE_SIZE; // Size of thread stacks.
var timer_last_count: u64 = 0;
pub fn update_time_used() void {
const current_count = time.offset_us;
const current_count = kernel.time.offset_us;
const elapsed = current_count - timer_last_count;
// if (current_task.data.tid == 1) println("{} adding {} time", current_task.data.tid, elapsed);
// if (current_task.data.tid == 1) kernel.vga.println("{} adding {} time", current_task.data.tid, elapsed);
timer_last_count = current_count;
current_task.data.time_used += elapsed;
}
@ -45,22 +47,22 @@ pub const Task = struct {
pub fn create(entrypoint: usize) !*Task {
// Allocate and initialize the thread structure.
var t = try vmem.allocator.create(Task);
errdefer vmem.allocator.destroy(t);
var t = try kernel.vmem.allocator.create(Task);
errdefer kernel.vmem.allocator.destroy(t);
t.time_used = 0;
t.state = .ReadyToRun;
t.tid = tid_counter;
tid_counter +%= 1;
assert(tid_counter != 0); //overflow
std.debug.assert(tid_counter != 0); //overflow
// allocate a new stack
t.stack = try vmem.allocator.create([STACK_SIZE]u8);
t.stack = try kernel.vmem.allocator.create([STACK_SIZE]u8);
t.esp = @ptrToInt(t.stack) + STACK_SIZE;
// if the tasks rets from its main function, it will go to terminate
// NOTE: if terminate is called this way it has an incorrect ebp!
t.esp -= 4;
@intToPtr(*usize, t.esp).* = @ptrToInt(task.terminate);
@intToPtr(*usize, t.esp).* = @ptrToInt(terminate);
// this will be what ret goes to
t.esp -= 4;
@intToPtr(*usize, t.esp).* = entrypoint;
@ -72,8 +74,8 @@ pub const Task = struct {
}
pub fn destroy(self: *Task) void {
vmem.allocator.destroy(self.stack);
vmem.allocator.destroy(self);
kernel.vmem.allocator.destroy(self.stack);
kernel.vmem.allocator.destroy(self);
}
};
@ -81,11 +83,11 @@ pub const Task = struct {
extern fn switch_tasks(new_esp: usize, old_esp_addr: usize) void;
pub fn new(entrypoint: usize) !*TaskNode {
task.lock_scheduler();
defer task.unlock_scheduler();
kernel.task.lock_scheduler();
defer kernel.task.unlock_scheduler();
const node = try vmem.allocator.create(TaskNode);
errdefer vmem.allocator.destroy(node);
const node = try kernel.vmem.allocator.create(TaskNode);
errdefer kernel.vmem.allocator.destroy(node);
node.data = try Task.create(entrypoint);
ready_tasks.prepend(node);
@ -93,16 +95,16 @@ pub fn new(entrypoint: usize) !*TaskNode {
}
pub fn wakeup_tick(tick: usize) bool {
task.lock_scheduler();
defer task.unlock_scheduler();
kernel.task.lock_scheduler();
defer kernel.task.unlock_scheduler();
task.sleeping_tasks.decrement(tick);
kernel.task.sleeping_tasks.decrement(tick);
var popped = false;
while (task.sleeping_tasks.popZero()) |sleepnode| {
while (kernel.task.sleeping_tasks.popZero()) |sleepnode| {
const tasknode = sleepnode.data;
tasknode.data.state = .ReadyToRun;
vmem.allocator.destroy(sleepnode);
task.ready_tasks.prepend(tasknode);
kernel.vmem.allocator.destroy(sleepnode);
ready_tasks.prepend(tasknode);
popped = true;
}
return popped;
@ -110,10 +112,10 @@ pub fn wakeup_tick(tick: usize) bool {
// TODO: make a sleep without malloc
pub fn usleep(usec: u64) !void {
assert(current_task.data.state == .Running);
std.debug.assert(current_task.data.state == .Running);
update_time_used();
const node = try vmem.allocator.create(SleepNode);
const node = try kernel.vmem.allocator.create(SleepNode);
lock_scheduler();
defer unlock_scheduler();
@ -126,9 +128,9 @@ pub fn usleep(usec: u64) !void {
}
pub fn block(state: TaskState) void {
assert(current_task.data.state == .Running);
assert(state != .Running);
assert(state != .ReadyToRun);
std.debug.assert(current_task.data.state == .Running);
std.debug.assert(state != .Running);
std.debug.assert(state != .ReadyToRun);
update_time_used();
// println("blocking {} as {}", current_task.data.tid, state);
@ -161,7 +163,7 @@ pub fn unblock(node: *TaskNode) void {
}
pub fn terminate() noreturn {
assert(current_task.data.state == .Running);
std.debug.assert(current_task.data.state == .Running);
lock_scheduler();
current_task.data.state = .Terminated;
@ -179,7 +181,7 @@ pub fn cleaner_loop() noreturn {
if (terminated_tasks.popFirst()) |n| {
notify("DESTROYING {}", .{n.data.tid});
n.data.destroy();
vmem.allocator.destroy(n);
kernel.vmem.allocator.destroy(n);
} else {
notify("NOTHING TO CLEAN", .{});
block(.Paused);
@ -191,15 +193,15 @@ pub var IRQ_disable_counter: usize = 0;
pub var postpone_task_switches_counter: isize = 0; // this counter can go negative when we are scheduling after a postpone
pub var postpone_task_switches_flag: bool = false;
fn lock_scheduler() void {
if (constants.SMP == false) {
x86.cli();
if (kernel.constants.SMP == false) {
x86.instr.cli();
IRQ_disable_counter += 1;
postpone_task_switches_counter += 1;
}
}
fn unlock_scheduler() void {
if (constants.SMP == false) {
assert(IRQ_disable_counter > 0);
if (kernel.constants.SMP == false) {
std.debug.assert(IRQ_disable_counter > 0);
postpone_task_switches_counter -= 1;
if (postpone_task_switches_flag == true and postpone_task_switches_counter == 0) {
postpone_task_switches_flag = false;
@ -208,7 +210,7 @@ fn unlock_scheduler() void {
}
IRQ_disable_counter -= 1;
// must be the last instruction because we do interrupts inside interrupts
if (IRQ_disable_counter == 0) x86.sti();
if (IRQ_disable_counter == 0) x86.instr.sti();
}
}
@ -218,7 +220,7 @@ pub fn preempt() void {
update_time_used();
if (ready_tasks.first == null) {
notify("NO PREEMPT SINGLE TASK", .{});
time.task_slice_remaining = 0;
kernel.time.task_slice_remaining = 0;
return;
}
@ -234,8 +236,8 @@ pub fn preempt() void {
// - scheduler is locked
// - the tasks being switched to will unlock_scheduler()
pub fn switch_to(chosen: *TaskNode) void {
assert(chosen.data.state == .ReadyToRun);
assert(current_task.data.state != .Running);
std.debug.assert(chosen.data.state == .ReadyToRun);
std.debug.assert(current_task.data.state != .Running);
// save old stack
const old_task_esp_addr = &current_task.data.esp;
@ -243,8 +245,8 @@ pub fn switch_to(chosen: *TaskNode) void {
// switch states
chosen.data.state = .Running;
current_task = chosen;
if (ready_tasks.first == null) time.task_slice_remaining = 0;
if (ready_tasks.first != null) time.task_slice_remaining = time.TASK_SLICE;
if (ready_tasks.first == null) kernel.time.task_slice_remaining = 0;
if (ready_tasks.first != null) kernel.time.task_slice_remaining = kernel.time.TASK_SLICE;
// we don't have any startup code for tasks, so i do it here
if (current_task.data.born == false) {
@ -267,8 +269,8 @@ pub var CPU_idle_start_time: u64 = 0;
// unlock_scheduler should be called after
// current_task is blocked or running (preemption)
pub fn schedule() void {
assert(IRQ_disable_counter > 0);
assert(current_task.data.state != .ReadyToRun);
std.debug.assert(IRQ_disable_counter > 0);
std.debug.assert(current_task.data.state != .ReadyToRun);
// postponed
if (postpone_task_switches_counter != 0 and current_task.data.state == .Running) {
@ -291,7 +293,7 @@ pub fn schedule() void {
// single task
if (current_task.data.state == .Running) {
notify("SINGLE TASK", .{});
time.task_slice_remaining = 0;
kernel.time.task_slice_remaining = 0;
return;
}
// no tasks
@ -299,21 +301,21 @@ pub fn schedule() void {
}
fn idle_mode() void {
assert(ready_tasks.first == null);
assert(current_task.data.state != .Running);
assert(current_task.data.state != .ReadyToRun);
std.debug.assert(ready_tasks.first == null);
std.debug.assert(current_task.data.state != .Running);
std.debug.assert(current_task.data.state != .ReadyToRun);
notify("IDLE", .{});
// borrow the current task
const borrow = current_task;
CPU_idle_start_time = time.offset_us; //for power management
CPU_idle_start_time = kernel.time.offset_us; //for power management
while (true) { // idle loop
if (ready_tasks.popFirst()) |t| { // found a new task
CPU_idle_time += time.offset_us - CPU_idle_start_time; // count time as idle
timer_last_count = time.offset_us; // don't count time as used
CPU_idle_time += kernel.time.offset_us - CPU_idle_start_time; // count time as idle
timer_last_count = kernel.time.offset_us; // don't count time as used
// println("went into idle mode for {}usecs", time.offset_us - CPU_idle_start_time);
if (t == borrow) {
@ -322,43 +324,43 @@ fn idle_mode() void {
}
return switch_to(t);
} else { // no tasks ready, let the timer fire
x86.sti(); // enable interrupts to allow the timer to fire
x86.hlt(); // halt and wait for the timer to fire
x86.cli(); // disable interrupts again to see if there is something to do
x86.instr.sti(); // enable interrupts to allow the timer to fire
x86.instr.hlt(); // halt and wait for the timer to fire
x86.instr.cli(); // disable interrupts again to see if there is something to do
}
}
}
pub fn notify(comptime message: []const u8, args: var) void {
const bg = vga.background;
const fg = vga.foreground;
const cursor = vga.cursor;
vga.background = fg;
vga.foreground = bg;
vga.cursor = 80 - message.len;
vga.cursor_enabled = false;
pub fn notify(comptime message: []const u8, args: anytype) void {
const bg = kernel.vga.background;
const fg = kernel.vga.foreground;
const cursor = kernel.vga.cursor;
kernel.vga.background = fg;
kernel.vga.foreground = bg;
kernel.vga.cursor = 80 - message.len;
kernel.vga.cursor_enabled = false;
print(message, args);
kernel.vga.print(message, args);
vga.cursor_enabled = true;
vga.cursor = cursor;
vga.background = bg;
vga.foreground = fg;
kernel.vga.cursor_enabled = true;
kernel.vga.cursor = cursor;
kernel.vga.background = bg;
kernel.vga.foreground = fg;
}
pub fn format_short() void {
print("{}R {}B {}S", .{ ready_tasks.len, blocked_tasks.len, sleeping_tasks.len });
kernel.vga.print("{}R {}B {}S", .{ ready_tasks.len, blocked_tasks.len, sleeping_tasks.len });
}
pub fn format() void {
update_time_used();
println("{}", .{current_task.data});
kernel.vga.println("{}", .{current_task.data});
var it = ready_tasks.first;
while (it) |node| : (it = node.next) println("{}", .{node.data});
while (it) |node| : (it = node.next) kernel.vga.println("{}", .{node.data});
it = blocked_tasks.first;
while (it) |node| : (it = node.next) println("{}", .{node.data});
while (it) |node| : (it = node.next) kernel.vga.println("{}", .{node.data});
var sit = sleeping_tasks.first;
while (sit) |node| : (sit = node.next) println("{} {}", .{ node.data.data, node.counter });
while (sit) |node| : (sit = node.next) kernel.vga.println("{} {}", .{ node.data.data, node.counter });
}

View file

@ -91,7 +91,7 @@ pub fn topbar() void {
}
}
fn printCallback(string: []const u8) Errors!void {
fn printCallback(string: []const u8) anyerror!void {
vga.writeString(string);
}

View file

@ -18,67 +18,39 @@ pub fn available() usize {
return stack_index * x86.PAGE_SIZE;
}
fn dealloc(addr: usize) void {
fn free(addr: usize) void {
x86.paging.unmap(addr);
stack[stack_index] = addr;
stack_index += 1;
}
const Error = error{OutOfMemory};
// const Error = error{OutOfMemory};
fn realloc(
self: *std.mem.Allocator,
old_mem: []u8,
old_alignment: u29,
new_byte_count: usize,
new_alignment: u29,
) ![]u8 {
if (old_mem.len == 0) {
fn alloc(
ctx: *anyopaque,
len: usize,
ptr_align: u8,
ret_addr: usize,
) ?[*]u8 {
// new allocation
std.debug.assert(new_byte_count < x86.PAGE_SIZE); // this allocator only support 1:1 mapping
std.debug.assert(len < x86.PAGE_SIZE); // this allocator only support 1:1 mapping
if (available() == 0) return error.OutOfMemory;
stack_index -= 1;
var vaddr: usize = stack[stack_index];
try x86.paging.mmap(vaddr, null);
return @intToPtr([*]u8, vaddr)[0..new_byte_count];
}
// free
if (new_byte_count == 0) {
dealloc(@ptrToInt(&old_mem[0]));
return &[_]u8{};
}
kernel.vga.println("vmem: unsupported allocator operation", .{});
x86.hang();
// return undefined;
}
fn shrink(
self: *std.mem.Allocator,
old_mem: []u8,
old_alignment: u29,
new_byte_count: usize,
new_alignment: u29,
) []u8 {
// free
if (new_byte_count == 0) {
dealloc(@ptrToInt(&old_mem[0]));
return &[_]u8{};
}
kernel.vga.println("vmem doesn't support shrinking, {}, {}, {}, {}", .{
old_mem,
old_alignment,
new_byte_count,
new_alignment,
});
x86.hang();
// return undefined;
return @intToPtr([*]u8, vaddr)[0..len];
}
pub fn init() void {
allocator = std.mem.Allocator{
.reallocFn = realloc,
.shrinkFn = shrink,
.ptr = undefined,
.vtable = std.mem.Allocator.VTable{
.alloc = alloc,
.resize = undefined,
.free = free,
}
// .reallocFn = realloc,
// .shrinkFn = shrink,
};
var addr: usize = kernel.layout.HEAP;
while (addr < kernel.layout.HEAP_END) : (addr += x86.PAGE_SIZE) {